
o

©

©

i

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

• l:f}"

_ .) "_

DOCUMENTING THE DECISION STRUCTURE

IN SOFTWARE DEVELOPMENT

By

J. christian Wild, Principal Investigator

Kurt Maly, Co-Principal Investigator

Stewart N. Shen, Co-Principal Investigator

Final Report

For the period ended August 15, 1990

Prepared for
National Aeronautics and Space Administration

Langley Research Center

Hampton, virginia 23665

Under

Roioaroh Grant NAG-I-1026

Carrie K. Walker, Technical Monitor

ISD-Sytems Architecture Branch

(NASA-CR-I_6865) DOCUMENTING THL DECISION

STRUCTURE IN SOFTWARE OEVELOPMENT Fina|

Report, period ending 15 Auq. 1990 (01d
Dominion Univ.) 39 p CSCL 09_

G3161

Ng0-zqlod

Uric1 <_s

0_05303

September 1990

DEPARTMENTOF COMPUTERSCIENCE
COLLEGEOF SCIENCES
OLD DOMINIONUNIVERSITY
NORFOLK,VIRGINIA 23529

DOCUMENTINGTHE DECISION STRUCTURE

IN SOFTWARE DEVELOPMENT

By

J. Christian Wild, Principal Investigator

Kurt Maly, Co-Principal Investigator

Stewart N. Shen, Co-Principal Investigator

Final Report

For the period ended August 15, 1990

Prepared for
National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Ressaroh Grant NAG-I-1026

Carrie K. Walker, Technical Monitor

ISD-Sytems Architecture Branch

Submitted by the

Old Dominion university Resarch Foundation

P.O. Box 6369

Norfolk, Virginia 23508-0369

September 1990

Technical Report # TR-90-19

Decision-Based-Software Development

Chris Wild and Kurt Maly

Old Dominion University

Department of Computer Science

Norfolk, Virginia 23529-0162

U.S.A.

o3-16-9o

(revised 9-25.90)

Decision-Based Software Development

Chris Wild I(urt MMv

Lianfang Liu

Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

(804) 683-467_)

September 25. 1990

Abstract

Current software development paradigms focus on the products of the devel-

opment process. Much of the decision making process which produces these

products is outside the scope of these paradigms. The Decision-Based Soft-

ware Development (DBSD) paradigm views the design process as a series of

interrelated decisions which involve the identification and articulation of prob-

lems, alternates, solutions and justifications. Decisions made by programmers

and analysts are recorded in a project data base. Unresolved problems are also

recorded and resources for their resolution are allocated by management ac-

cording to the overall development strategy. This decisioa st-ructure is linked to

the products affected by the relevant decisions and provides a process oriented

view of the resulting system. Software maintenance uses this decision view of

the system to understand the rationale behind t.he decisions affecting the part

of the system to be modified. The relationships between decisions help assess

the impact of changing one or more decisions. We describe D-HyperCase, a

prototype Decision-Based Hypermedia System and give results of applying the

DBSD approach during its development.

1 Introduction

Although most people believe that the structured methods introduced in the

70's to combat the "software crisis" have increased productivity and reliability,

there is evidence that such methods may contribute to the problem of develop-

ing software systems [Sne89]. A top-down design decomposition may be a good

method for documenting a finished design, however it is a poor model of the de-

sign process 1, presenting an often unachievable ideal. On the other hand, most

bottom-up, or compositional, approaches to software development also fail to

adequately support the design process by" narrowly focusing on the products of

software development (such as libraries of functions or objects). Current struc-

tured engineering methods use the product structure to structure the tasks of

the design process. However, many aspects of the design process have no coun-

terpart in the product structure. The need to represent the process structure as

well as the product structure has recently attracted interest [IEE88]. However,

much of the emphasis in this research is on modeling the design process as a

program execution in which the initial problem is transformed into a number

of intermediate products culminating in the final product, the software desired.

The record of the transformations performed constitutes a design plan that can

be replayed when the design is reused or maintained [Ba185,Fic85]. Such a

record may capture the results of a design process but does not represent how

the design was actually done. Again the design process is not supported and

information about the design process is lost. This loss of information makes it

difficult to replay the process program _L.Mos86,Ba188].

In contrast to this transformational model of the design process is the prob-

lem solving model [Das89,Con88]. The problem solving model involves:

• Identification and articulation of the problem to be solved. In many cases

the true problem has not been identified at the beginning of the design

process. An important aspect of _he design process is the discovery and

analysis.of the problems to be solved.

• Most problems allow for several different solutions. One of the skills of

a good designer is the ability to generate alternate solutions. For some

problems, only one choice among the alternates is necessary. In other

cases, several choices among the alternates may be desirable (for instance,

to improve performance). Because a solution to a problem may itself

constitute a subproblem, the process of problem solving is recursive.

• The myriad of choices facing the designers is one reason the design process

is so di_cult. There is a risk that a proposed solution may in fact prove

infeasible. Analyzing the alternate solutions to a problem can be very

iWe use the term design process to encompass all activities which constitute the software

l_fe cycle including r_quirements analysis, speci_cation, deslgn, implementation, validation

vei'i_cation and rnalnt_nance.

time consuming. In some cases, a simulation model or prototype must
be built to better understand the tradeoffs among a set of alternates. If

there are several feasible solutions, choosing an optimal one may not be

possible due to the large number of choices available. Often the best the

designer can achieve is a solution that satisfies all the constraints. The
skill and experience of the designer then determines the optimality of the

proposed solutions. Much of what is termed software maintenance involves
the reexamination of the set of alternates.

• The current choice of one or more alternatives.

The design process is limited by the inability of people to articulate a precise

characterization of the problem they wish to solve and to thoroughly under-

stand the consequences of their proposed solutions 2. This limitation means
that problem requirements are frequently incomplete, inconsistent, or otherwise

inappropriate expressions of the problem to be solved. Thus the design process
will involve changes to the problem requirements. Software maintenance is a
continuation of the design process resulting from changes in the probtem require-

ments (adaptive), changes to correct faulty solutions to a problem (corrective)

or changes to improve inappropriate solutions (perfective)+ A design and main-

tenance methodology which supports the problem solving aspects of software

development must help the software engineer manage change by recording the
decision rationale and the retationships between problem and solutions.

In this paper, we propose the Decision-Based Software Development

(DBSD) paradigm to software development and maintenance. In the DBSD
approach, the decision is the focal element of the problem solving process. The

importance of recording the decisions made during the design process and their
justifications has been recognized by others[RORL90]. The KAPTUR (Knowl-

edge Acquisition for Preservation of Tradeoffs and Underlying Rationales) sys-

tem supports reuse of alternate architectures for telemetry and command control
center software [CTA89]+ KAPTUR records distinctive features of the recom-
mended architecture. Distinctive features are those in which an architecture is

significantly different from other architectures. The rationale for choosing the
distinctive feature is also recorded. Plausibility-Driven Design was developed in

order to builc_ confidence in a proposed computer architecture before a physical

realization is undertaken lAD87]. Each problem decomposition step records the

knowledge used in that step and the justification for taking that step. Because

performance is a critical aspect of computer architecture design, this approach
integrates non-functional requirements into the design process. The automated

replay of designs is an important part of the specification-based software gener-
ation paradigrn [Bal85]. A recent review of work in this area identifies the need
to record a_ad utilize decisions and their justifications in order to make further

2Thls limitation is wha_ Simon refers to as "bounded rationality" in synthesizing a design.
[SimSt]

progressin this research [Mos89].
Section 2 presents our approach to decision based software development. In

section 3, issues with respect to software maintenance are discussed. In section

4, D-HyperCase, a CASE tool to support DBSD, is described. In the following
section, results on the use of our DBSD approach to the development of D-

ttyperCase are given. In section 6, we discuss our experiences with the DBSD
method and outline several future developments we plan to undertake.

In the rest of this paper, we use the term software development to include

both pre-deployment design as well as post-deployment design. The distinc-
tion between initial development and continuing maintenance is often artificial.

Maintenance begins the moment that the first requirement is written down and

continues throughout the life cycle. In addition, a significant part of software
maintenance is development of new or corrected functions. The boundary be-
tween software reuse and adaptive maintenance is fuzzy at best. Software devel-

opment by evolving existing systems may be the preferred method of developing
applications in the 1990's. For these reasons, much of what will be discussed

in this paper applies equally well to initial development as well as maintenance
and we will use the term software development to encompass both activities.

2 A decision based paradigm for structuring

the problem solving process

In the Decision Based Software Development (DBSD) paradigm, the problem

solving process is documented by its decision structure (as defined in section

2.2). This decision structure provides a new way of viewing of the software
document base a. Data base researchers have introduced the term 'view' to

allow for different interpretations of the same data. Similarly, we propose the
term 'view' to allow for different structuring of the same document. A view

organizes a document, or a set of documents, from a particular perspective. For
example, a module view describes the traditional module structure of source
code. For a programming language which supports functional abstractions,

the module view gives the sets of functions composing the system and their
interrelationships. For other languages, the module view would be the set of

data abstractions, packages or objects composing the system. While the value
of the module view is well recognized in software engineering, other views of
the document base are also useful. Data flow analysis views a system through

the definition and use of data items. In this paper, we propose the decision

view of the document base. This view structures the document ba_e according

to the decisions made during the problem solving process which created it. For

example, the source code decision view is the set of source code statements

ZThe document base is the set of documentation supporting a software project. This

includes requirements, specLfications, design documents, test plans, operations manuals, etc.

pertaining to a particular decision.

2.1 The Problem Solving Process

The exploration of the problem/solution space is frequently driven by perceived

risks [Boe86], special opportunities, managerial directive or personal/team pref-

erence. Issues which are not clearly understood may be explored in some depth
before returning to mainstream development. In the early stages of problem

solving, brainstorming can be very productive [CB88]. The order in which the
problem/solution space is explored may appear arbitrary to the outside ob-

server. Managing this highly creative process is one of the major challenges

of software engineering. Some claim that one of the goals of modern software
engineering is reproducibility of the products. The danger of reproducibility

is that it limits creativity in the solution. Great designers should be expected

to produce better solutions than less experienced and less talented colleagues.
However, if the system is to be maintained by others, then the thought process

which went into that great design must be captured. In this way great design-

ers can be used to maximum advantage and others can learn from their efforts

through the documented record of the design process [BroS7]. Creativity must
be supported, nurtured and managed. We believe the creative aspects of the

problem solving process can be structured, although not through a structure

imposed by the products (that do not yet exist) but rather through support of

the process which eventually will produce a structured product. Because there
is a record of each step in the problem solving process, there is not the same

need to record product structures early in the process.

By considering the development process to be a problem solving activity,
lessons learned in the research in automated problem solving can be applied to

software development. The design process is characterized by search IDa.s89].
This search is performed in a certain chronological order determined by the

problem solving strategy. This search is characterized by dead-ends and sub-

optimal solutions. Backtracking is necessary in order to recover from earlier
bad choices. It is well known that backtracking in chronological order of the

decisions made can be very inefficient. A bad choice made very early in the

design process will require backtracking to that point with the loss of all work
done after that choice. This is true even if the decisions made after the faulty

one do not depend on it in any way. In order to increase the efficiency of search,

one can record the dependencies between decisions and only retract those deci-

sions which are truly dependent on the bad decision. This kind of backtracking
is called dependency directed backtracking [Doy79]. The work on depen-

dency directed backtracking has led to a problem solving architecture which
separates the problem solver from the process which records and maintains the

dependency information (commonly referred to as the Truth Maintenance

System [dK86]). Our work adopts this architecture. The decision making is

done by people while the software engineering environment maintains the doc-

umentbaseincludingthedependenciesbetweendecisions.Thebacktracking
thatoccursduringtheinitialdevelopmentaswellasthatwhichoccursduring
maintenancebecomesmoreefficientandreliablebecauseof therecordof the
truedependenciesbetweendecisions,problemsandsolutions.

2.2 The decision structure

TheDBSDapproachaugmentsa traditionalsoftwaredevelopmentdocument
basebyarecordof individualdecisionsandtherelationshipamongthem.An
individualdecisionis a 4-tupleasshownin Fig. 1. Thesesolutionsin turn

Problem: descriptionoftheproblembeingaddressedbythisdecision.
Alternatives: a setof possiblesolutionsto theproblem.Recordingthesetof

alternatesnotchosenhasseveraladvantages:
• Promisingalternateswhichledto dead-endsorundesirableresultsmay

preventwastedeffortduringmaintenanceif redesigninvolvesthisdeci-
sion.

• Promisingalternateswhichwereidentifiedbutnotpursueddueto lack
of resourcescanprovidehelpfacilitatefutureimprovements.

Solution: Thealternate(s)chosentosolvethisproblem.
Justification: Thereasonwhytheparticularsolutionwaschosen.A justification

cantakemanydifferentforms:
• A formalproofthatthesolutionsatisfiestheproblem.
• Aninformalargumentofsatisfaction.
• Resultsfromaprototype,simulationor literaturereview
• Non-technicalissuessuchasLimitedresources,companypolicyor legal

restrictionsmayinfluencethedecision.
• Theexistenceof previousdecisionsmayprovidea contextin whicha

particularchoiceispreferred.
• A time/space analysis.

• An estimate of engineering effort to produce a solution (cost analysis).

• Compatibility concerns with systems which must interface to this system.

• Operational compatible with fielded versions of this system.

Figure 1: Decision Object

may lead to other problems. The last decision in a chain of problem solving

shouldreferto somesoftwareproductwhich documents the solution 4. The

beginning of a well-formed problem solving chain should be some requirement,
specification or need. For purposes of visualization, a decision is divided into two

parts. We introduce the term problem node to mean a node which contains
the description of a problem, and a decision node, a node which contains the
selected solution including alternatives and justifications.

The relationship between problem and decision nodes is represented in a de-

cision dependency graph. We define a dependency link between decisions
if one decision generates a solution which becomes the problem addressed by the
second decision and a justification link between nodes when one node is used

to justify a particular decision in the second node. Justification links provide
the context in which a decision is made.

The distinction between dependency and justifications is important during

the change process. When a problem node is deleted, all nodes dependent only
on it can also be removed because we no longer have to solve that particular

problem. Typically a change in a requirement will require a change in some
of the original decisions. Old solutions may no Longer work and any decisions

which depended on only those solutions can be discarded. Any code associated
with a discarded decision is obsolete and should also be discarded. Changes in

a node justifying a decision may or may not require changes in that decision.

For example, the choice of a particular interprocess communications protocol,

although sub-optimal, may be justified by its availability, the lack of availability
of a better protocol and the Limited resources available for implementing a better

protocol. If at some later time, a better protocol becomes available, it is still

possible to use the impLementation based on the old protocol even though the

justification for choosing it has gone away. Having a record of the decision and
its justification helps other people understand why the system is implemented

in a suboptimal manner. On the other hand, if the old protocol is removed and

replaced by a new one. then the decision must be changed.

Any of the nodes in the decision dependency graph can be related to a
software document by a view link which associates all relevant sections of the
document to that node. The result is a decision graph which links requirement
nodes to the relevant information in the document base as shown in Fig. 2.

A requirement may be refined into one or more sub-problems. The solutions
to these subproblems can be done in the context of other decisions. In the

figure, requirement "R3" might represent a non-functional requirement whose
refinement as "P4" justifies the functional decision "D4". The structuring pro-

vided by decisions does not necessarily correspond to the normal presentation
structure of a document. The view of a decision may be scattered through-

out a document impacting many parts of it (e.g. the view of decision "D6").

In addition, several decisions may impact the same part of the document. As

4What constitutes a solution differs wiLh the level of abstraction of the problem solving.

$pecificatiorm and design documents represent different levels of sohition_B. The requirement

document repreaenta a high level solution to the user's problem

,(n.s._a,_l.Ull uo!u_.tuo(lPlO
o:_uouatu!ol4lpuo ug!sO(l " luozudolaaa(l)._omlfo$ pasDS-uols1._)(1

uo!leluotun3o 0 ol SltlatUaJ!nba_l _UplU!"l

tldea D £3uopuadao uo[s!aaO :_ "_!d

uo!spao V--'-]

tuaIq°ad (_)

lU!'l uo!ll3aU!lsnf .4...

_tU!'l £auaptnadao

(galA luamnao(l)

suo[lnlos
tldl_a D uolsl3o(l

(sluamaa!nba_l)
smalqOad

J,N_tllldOT_A_t(I _I_IVAt2dOS (Ii_tSVIt-NOISID_ttl
n

/

shown in the figure, the decision views of "D5" and "D6" overlap. Associating
multiple views with a portion of a document helps the software engineer better

understand the complex interrelationships that exist within the software system

and to assess the impact of making changes to the related parts of the system.

Through the decision dependency graph, one can trace from any document

back through the relevant decisions to a requirement. One can also trace from a

problem to its solution, expressed perhaps as the lines of code which implement
a solution to that problem. Requirements, specifications and design documents

represent a solution at their respective levels of abstraction and can also be

viewed through the decisions which created them. Also some of the final solu-

tions are not programs. Users manuals and operations guides are part of the
system solution and can be in the view of decisions. Fig. 3 shows the decision

dependency graph divided into levels corresponding to requirements, specifica-

tions, design and implementation. This figure indicates the generality of the
DBSD paradigm. All phases of the life cycle can be viewed as problem solving

and the corresponding products can be viewed through its decision structure
s The solutions posed at one phase of the life cycle become problems to be

solved at later stages of the life cycle. Although in this paper we concentrate

on the decision view of the document base, other methods for viewing the set
of documents may be available. The figure shows a module view and its call-

ing structure, a data flow view, the user/system behavioral view (expressed as a

context free behavior grammar), and animation figures to simulate the execution

of the program.

2.3 Using DBSD for Design

As much as was practical, the DBSD approach was used during the design

of a prototype DBSD software engineering environment called D-HYPEI_CAsE
[WM89]. This exercise has given considerable insight into the use of the DBSD

paradigm for initial development. It was anticipated that recording the decision
structure would place an additional burden during the initial design, but that

the increased costs would be justified by better support for maintainability.

What we learned, however, was that using the DBSD paradigm could provide

valuable support of the initial design process. Three advantages of the DBSD

approach for the design process discussed in this section are:

• Managing the dynamics of the design process.

• Identifying incompleteness in the requirements.

• Placing a particular problem solving activity in a larger context.

Sln the figure only one of the two views aL each of the early life cycle levels is shown. This

was done to reduce clutter within the fiKure.

Kil._'ja,Vul} UOlU?U._{l PlO
,_.mo i,m_ml _,trot _ u,'_'?_._(! " m m,hSla,_d(I ,uo sslfi) S' pas'tsH -um.s'1.:Ja¢/

uo[lt3,1u_tun3ocl ;_aeAXljOS P;3SeFl-U°!S! 3;_C1 £["_!:I

J,N_tI41dOT_tA_tU _HVA, i,L_IOS (I_SVg-NOISID_ttl
m

Oneof themostimportantissuestobeaddressedinamaintenancesuppor_
environmentisthetraceabilityoftheprogramto itsrequirementsandviceversa•
Thisallowsthesoftwareengineertounderstandaprogram(bytracingbacktc.
requirements)or to assess the impact of changing a requirement (by tracin¢

from requirements)• Every requirement shouhl be linked through the decision

dependency graph to the source code and vice versa. Top-down and bottom-

up approaches build traceability graphs which are always connected• However

it may not be possible or desirable to keep the traceability' graphs connected

If the state of the problem solving process is recorded, then it is possible tc.

schedule the problem solving process opportunist[cally. Thus. if an expert in

security from company' headquarters is visiting this week. management may

choose to work ,_n security problems ,vezl th<.mqll -uch work may be otherwis_

premature. In fact. it may not b*_ possible io choose a solution b,_,'ause th-

security' requirem,_nts h¢_v,: not y,_t been sulfici,'ntly r_'tin,_l floweret, alt#rnat-

solutions could be recorded along whh the jus¢ificath)us for ,hoosing one over

the other. Work ot_ this probhml can be recor,le{l m a,h','isiou u,)_l_ wilh rh.-

solution slot l_.fv .m_ptv. This ,.xploratioBl may _l-,, it_,li,'ar- in what way tt>

requirements with respect to security ar- v;igu,' :_nd I_-,,I r,o b,. clariii_',t .::

expanded, a.s w÷ll as the possible mteracti,_ll> with ,)Ih,.r ,l,.si_II ,,,tlc,ri>

In some ca.s-s when solving probh'ms, se_*•r l[_'_It 'rll;Tt _S Call he i(lentified

but there is not sut:_cient informationtochoose,m,',)_-r th,.,>ther Fh,',oftwar-

engineer could choose one arbitrarily, but rh,' ,li_ng,,r in _his is that if a similar

problem must },_ sol_,l somewhere ,dse. th,'n ;i ,liif,.i_nt ,h,>ir_" could lead t..

inconsistency (at l,m._t in sty'b') R,.c_gnizing tll:ll ,_lt_" i, I';ic,.,t with an :-irk,itrar3

choice leads to the idenrificatiol_ of a n,_w pl',>l,I,.ll_ in ',viii,'], _hi, [_robl_ml and all

similar prohlem_ are specilic itlsta.llCes r,'l_ing ou th,. -,aln,' .justtfi,'ation. For ex-

ample in designing the user interfac,'!'or the prc_l,)r bp,' th,.probb.llkofhatldlin_

erroneous inpuvs _s'_Ls faced Th-r, _ :tr__ innl_y sl vle_ _)l" hait(llin_ -rr,or mes_.ag h

and it may not matter illuch which oue is i'hosf'll ill ::t particular program. Th-

requirements writer may not wish to specify a particular error handling style

because to do so may" unnecessarily restrict the design. However. whichever

style is chosen should be used consistently throughout the system {such consis-

tency may be a requirement). Thus just.i_'ing a particular solution identifies a

larger context in which this solution occurs, poses the larger problem, solves it

in general and then uses that solution to justin the particular solution.

During the design of the prototype, we found a number of cases in which it

was easier to develop a solution to a problem than to identify the problem itself

That is we tended to write requirements in terms of a particular solution rather

than as a general problem statement (designing in the requirements). Solutions

tend to be more visible than the underlying problems. By asking what problem

does this requirement address, we were often able to discover when this hap-

pened. For example, the original requirements for the prototype called for one

editing window and several read-only windows to display parts of the document

base. The read-only windows used very different conventions than the editing

11

windowforbrowsingthroughdocuments.Thisrequirement represents a partic-

ular solution to a more general problem relating to response time. The editor

which we planned to use for this project is a large program. It was anticipated

that having multiple copies of the editor, one for each read-only window would

be detrimental to performance. However, the program specified to manage the

read only windows was an existing ['.NIX utility which used a very different

command structure from that used by the editor. Tile requirements spo,_'ified

one way to solve the problem and in doing so raised the problem of multiplo

inconsistent sets of commands for the common functions to browse through a

document. The real problem to be solved was how to achieve acceptabl÷ per-

formance given that the user couht have several windows open concurrently and

given the non-functional requirement for a consistetlt us_.r int_rfaco. By ,:mpt_a-

sizing problems, alternates, and solutions, many of th,'s_ psemlo prolq,'ms can

be discovered.

3 How DBSD supports software maintenance

The challenge Facing the til;tiiltetl<'lll,-,+ .ql:4ill,',)r is itl_h:+.l a t'ornli<labl, > ol> [-1>.

maintenance engineer [IIlISl selectiv,+h llll,[+.Pst;/ll,i [11 '.,llilicit>liT ,t,rail il,>, :,art,

of a large system which at,' the t_cus ,_f a particular ili;iilltiell;tl;<'e ta.sk Th_ +

impact of alternate sohilioiis to tha_ ta.,k within the ov+'rall str_t<:tur- (the

system must be &ssessed and the chos,'u sohition nuist b,> in_plem,'nte+l w:'hout

violating existing constraints of the .-_t,:itl. {;iv,'n that it is inlpo-;sit.i ,+ for

anyone to completely un,l,?rstan,l any lar_ ,_ _y.,t,'t_t in intimat, +<letail. tl_e <_ .:ess

of any maintenance ta.sk ,h_'pends ,)li th ,+ .tbiliI)lo fiu,I t il,' ret+waut infornmtion
in the document ba.se. Th_ set of re[evanl hlt;-Jrnintir_u neo,l,',t To perf.-.r:2l a

maintenance ta.sk is referre, I to as the closure

3.1 Understanding the Software Document Base

The original designer comes to an understanding of the system rather -,lowly

and records that understanding in a series of documents. The main purpose of

these documents is to help the maintenance engineer come to a similar under-

standing of the system. The difficulties with creating, maintaining and using

documentation are well known. Many authors assume that only the source code

is truly up to date and work only with the source code in maintaining a system.

Also the structure of most doct, mentation is along the lines of the products

produced and it is difficult to find the relevant portions of the document base

which pertains to a particular problem solving activity. This difficulty means

that it is unlikely that the document base will be adequately maintained. Be-

cause of this, a major portion of the time spent on a maintenance task is spent

in understanding the existing system [Cha88.WM88]. The decision structure

partitions the document base into decision views. The decision closure are all

12

portionsof thedocumentbasewhicharerelatedto thatdecision.Intile DBSD
paradigm,understandingadocumentbasemeansfindingtherelevantdecisions
(bybrowsingorkeywordsearch)andviewingtiledocumentbasethroughthose
decisions.Thejustificationsandalternatesconsidered,asrecordedin thedeci-
sionhelpsthemaintenanceengineerunderstandwhytile systemisstructured
asit is.

Fig. 3 illustratestherelationshipbetweenthedecisiondependencygraph
andthesoftwaredocumentbase.

[t is importantto realizethat a lineof a,Iocumentmaybepartof several
views.Forexample,alineof codemightexistbecauseit ispartof a decision
onsecurity'policyandalsobecauseit calculate,somefunction(whichneedsto..
besecure)Thislinewouldbeill theview_:otlc,'rlling>,tctlritypolicy_swella.-
tile viewconcerningthefunction.

3.2 Assessing Change

Assessingth- impactof makinga ,:hat_,'itlv,,l_._tw,),'onsid,_rationsFirs:
whatparts,:,fthe,iocl_ment ba># llmst i,t+ +'halL+.;',+,i'.' Secl)tt,l. how lltu,:h effort l-

involved in n_akin_, t Jl+.>.e chang,+_ ' Fho D [_I) I,.ra¢[igm supl._t "r< th+. first 1_,:"

leaves the a+.-o-srtl_nt ,_f_+lFort t_> Immanju,t_,'tll,'tlt Fin,ting th ,_ r,@_ant part-

of the docun_-nt ba..e which mr. alt',.ct,'+l }:,_ rh,. chail_- is ,Ion+' hi tile ,ruder-

standing phi, ° under the term clos_lro [_l[,s- ,>m + i_ addling How funct.ionalit?

performing a n_aintenance t,z._k r+_lllir +_', that _,.,ill, + ,b_¢i_i,>tls I+,_ ,:han.ged. Th-

true closure ._f a change is the s,_t ,-A'<at,qll,'ltt> add,'_l. ,I.l+.t,'+l. or modifi,+!

during the ::han_,'. Th, + closure found ,luriag lit,. _tld,.rst;mding pha.se is hop ,_-

full}' an upper bound on those portkolls _)f tit,' tlOCtllllettt ha..-;e which Illtlst b.

modified or ieleted.

Although assessing effort is a matter o[huntat, .iu_tg-tll,'Ilt. rh ,+.Io<'ision stru,-

lure can assist in making tmt ju¢lgom,_nt. W,srk,>t_ pl',.vio_ts .dt,+rnates may ha_

estimated effort in order to choose a solution [:or +,Xalllpte -_uppose that ther.

were two viable alternates to a problem, one which is ea-sy to implement bur

relatively ine_.cient, and one efficient but difficult to implemel_t, and that th, +

simpler solution was chosen. If the maintenance task is to improve the perfor-

mance in this area, then the information recorded ill the decision structure may

assist in assessing effort. In addition dead-end alternates which are recorded in

the decision will help avoid wasted effort in maintenance.

3.3 Implementation of a change

When implementing a maintenance task one is both constrained and assisted by

the existing solutions. The interrelationships between parts of a software system

makes it di_cult to make changes without introducing new faults. The intro-

duction of faults into the system often occurs because of dependencies between

parts of a program which appear in separate modules [LS86]. Vnderstanding

• ' : '4

13

the policy, style and functional issues which constrained the previous solution

(as recorded in the justification section of the decision) will help in generating

an implementation which is consistent with the rest of the system

In implementing a maintenance task it is critically important to update all

parts of the document base which are affected by the task. It is all too easy"

to neglect to update the supporting documentation when performing a mainte-

nance task. Often it is difficult to find tile relevant portions of tile supporting

documentation which require maintenance By' tying al[documentation to the

decision structure, we hope it will be easier to find and maintain the supporting

documentation. The support environment coulct insist that all documentation

associated with a changed decision be changed or certified as unaffected hv the

change. Structuring the document base through the decisions will help ,'ontrol

the evolution of the entire document base.

Maintenance is a particularly intense form ,)f reus+ + [Ba.s!)l]] Finding those

portions of an existing system which can be rei,_e,t is oue c,f the chatlenge_ for a

maintenance methodology. When implementing the D I]SD prototype wp found

that the intersection of a function and a view (which xw ,'all _t fl'ame, is an

extremely good can_lidate _Ls the unit of r,,usiu,.:' ,'o,1+' ";,+u_,ral prol;,_s_d- h;_+ +

been made- pro,-,.,tur+'s, t,,mplales, lime> _)f <'r_,l,.. :_i,st r;wt ,t;_t;_ T_ l"'-1;,at t':udt_

ha,,e l+)+.'ett fotlthl with ,'ach ,:>n,_ In DBSI) ,t i-, ,.;t>x t,+, },ut!+l ;l n,'_ '.;+'.'+ 1,',

extracting frames from oth,'r views

4 D-HyperCase: A Decision-Based-Support-System

D-Hyp++rCase is a prototype software eugine_riltg mtvirotlln<tt b+qtlg ,b+_.+lope,I

to evaluate the Dt3SD paradigm. This s_ction t_ri+,ttv ,lis,'T, D-tl_p_+r_':_s_

A. more cotnplet_t description is given in 7W?_[<'_]

4.1 D-HyperCase Abstract Machine

The project document base was defined in section 1 as t.he_ sum total of the

recorded information about tile project. The decision structure records tile de-

cisions made, alternatives considered and justifications for the solution chosen.

As importantly, the decision structure provides a backbone with which to or-

ganize and access the other forms of software documentation. The ability to

selectively view related parts of a set of documentation from different view-

points is closely related to the work on hypertext [Con87]. Some of the early

demonstrations of the decision based approach were done using the KMS hyper-

media system [AMY88]. The two limitations to current hypertext system which

were experienced were the inability to enforce a certain minimal structure on

the set of documentation and the difficulty of integrating project related tools.

The way we have chosen to introduce structure in the network of information

comprising the project document base is to base the design on a set of typed

r?'a2,''7'i _ ..,, .-

O;:+ ,..... .

14

objects and typed links. Thus a problem object always contains a link to some

decision object. The set of objects and links is user extensib[e. Each of the

objects is managed by its own set of tools which are bound to the object at the

time of object type definition. Each object must have as a minimum adisplay
tool and an edit tool.

Since the ability' to access the various objects in the project document base

is a crucial part of our approach, we have chosen to build D-HyperCase on top

of an Abstract HyperLink Machine (AHM) as shown in Fig. 4. This approach

is similar to that taken iu tile design of Neptune [Big88]. The AHM maintains a

data base of all the object types and their associated tools and the names of all

objects according to type. [,sing this information, it can invoke the appropriate

tool to display" or edit any object (thus Nukmg to tlmt obj,.,_t). [t also maintain.-.

a list of objects which the user has seen this se,,sion in c_v,Dr. This allc, w<_ th, _

us,_r to retrace his steps through the docum,mt ba.-,e.

The AI[.M supports two t,,'p,.,s of links: stl.'uctlll'ed links and nall.lte, links

A srrl,ctur_ll link is ,tefillel[between two t_l..,I ,)bj+','t,. ,)11- of whi.'h is rh_

'fr,7.,nl" object aml the other is tlw 'to obj,',t Wh,+n,_,-r an :,},2__ tt th,+

'!::.nF end of ih,. link is ,lefin,,,t. it :mr,>lIl:tti,:tN_ iN!v,rir., all tit ru,'rure,l

links for which it,, tyf,,- is the "['rOlll :+}Li,+ct. l'li,'s, + lilik'. ,I,-'lin+: _],- llilninlal

structure which If]list _XiSt ['Or th+: n,,w ,>l>j,.,i Titus.. ,.v,.,ry obj," ,)I" typ+-

"problenf' must have a lhik to a <t,'ci>iou f)tl tile ,>rh_.r han<l. :i;_In,. links

provide access to objects using their Ilallle T[l<':..,' lillk.., aro inlplicir an,l need

not be represonted in lhe AII.kl object },;is,= .\it\ ,)bj,,,t c:_n [l;tve .'iv, _rt-,itrar}

number of name links.

There is an interface to theso faciliti,s wNi,h can t-,- access,,,l I-.', _l_y' tool

buiMing on this lav.r. This minimal t,>:,ls,.t pr,_vi,t,,,l ,_a th...\bstracr Ityp.rLink

Machine layer consists ofa nlo<lified Ellmcs t,'xt ,.,lilof rStaSf:, an,l _ Ino,lifie,l

v,_rsion of tile Structured (-;raphic;d Knowh'd,_,,,, I_:_-.,' %y..r,,N1 (SC;I,;B'_ S[.flSs"

urider developnlent at OD[. "[hese tool.-, ,upli_,ri }..Sell,_rl< ,;,t,ject.-> ,>(",i,_"_upei"

class 'text" and "'graph" respectb.ely. The iuiiiiinal toolset defines ,-,lie mstan-

tiation of a HyperMedia system based on A[|.M. D-HyperCase is then built on

this layer. Further project specified tools can be built on top of D-HyperCase.

D-HyperCase is defined in terms of its objects e,nd associated tools. These

are described in section 4.2. A D-HyperCase tool can access the AH.M directly

through its tool interface. Such tools are called integrated tools and allow the

user to directly traverse HyperLinks from within the tool (by" whatever interface

the tool writer wishes to provide). In addition, D-HyperCase allows the inclusion

of non-integrated tools. Thus the set of tools available in D-HyperCase can be

expanded to include commercially available tools. These tools would not have

a direct interface into AHM. However, the user could access AHM facilities

through the D-HyperCa.se background menu a.s described below. In general.

the D-HyperCase tools allow display and editing of the software objects defined

in the project document base in ways appropriate for that object. For example,

the source code editor understands the syntax of the source language (because

'--,- f;M_E IS

r...i

ARCHITECTURAL DESIGN

r--q

o !

Not integrated tool ', :
p...q I O

! t ._ L .

. v

Background
menu

Backtrack, Link, Dictiona.r 3'

Integrated tool

Decision Graph Editor

Source Code Editor

Graph Editor

Assessment

Minimu_

SGmKBS : Graph_,,_js:Text I I X ,_v_

Tool interface

Hyperlinker
v

Suntools

Hyper Media S_,stem

D_HyperCase

Project

Figure 4. D_HyperCase Architectural Layers

Decision-Based Software Development "Design and Maintenance
Old Dominion Universi U

I I I I I I I I I I I I I I I I I I I

16

it, is a sl.rucl.ured languag,," ,,dilor), I.he rclalh:',,shil" I*,el'_','e,pll sollrce code views

and decisions and allows the user I.o access r,,lal,'d hlf,",rnlal.i,",n I.hrough the

llyperl,ink facilil,y. The ,.ditt>r for scmrce code ,d_i,'cls is huill, upml the modilied

Einacs edit,or provill,'d in Ill,' mi.il,,al I_.d s,'l I,,,c;ms,' s,,urce c¢_d,' is a subclass

of I,he class cd" I,ext ,,I,jecls

4.2 D-||ypcrCasc': Uscq"s P¢_rslmctiw'

We now describe I)-Ilyl_erC:ase from l,he user's p_,rsp,,cliv,'. Fig. 5 shows the ini-

tial screen shown to the user i,pon enl.ering I)-Ilyper(!ase. This screen provides

an overview of the l)-llyper('ase Syslem an,I is ;lit _ALiecl of lype "documenL

figure." Through the use oF Ihe hyperlmk facility, this screen provides access
t.o other scr,perts v,,hich Further explain the vari,_lls c,,ml_,",m'nts and ilsage of

D-I|yper('axe. TIw' lop h.fl I,;,nel sll,c,',vs th,' ohj_.cts v,hich are defined. The

I,op right panel g,iv,'s a picl ,,ri;d I'el'H'e";"lll ;It i_ll Id" ;I I_r,,l,d yph'al d_,cisic, n graph.

Further explanal.ion is availalde _ll demaml usi,,_, IIw hyperlexi, facility. The

boll, ore left panel shows Ihc sel or i¢_ols which ar,' a_ailalAe. The D-llyperCase

fools arc those provided hv lhe basic I)-Ilyper¢ 'asc machine. The Ilser lools are

those fools which are pm_ide_l on lop of I)-II.vlwv('as" 'l'he I_ol.lonl right panel

illustrates lhe llyperl,ink c_nncclion h,.Iw,','n a _l,.cisi_,n ,lode in the decision

graph aml its assc, ciale,I ,I,,srriplic, n and Ih,, s,,l ,,f '-,,'Ill'Or' COdt" ViOWS affecl,ed

by Ihis d,'cishm N,'l,'ctm_ :l d,'cish,n I1,,_1,' in Ihi'_ ¢,r;q,h will di_ldaY a menu

which inchJd,'s ill,' nalmu's _d' ;dl Ilvl_,'rl.hlks. 'lhis all,_w_. :wc,.ss I.o the dercrip-

tion or source code ass¢_cial ed wil h ibis d,,cisi-ll. A tu_,,riM associated with this

panel will h'ad the n,_,'r thr_,u_h lhe use ,_f Ih,' I1_ p,.rl.ink facilily in formi,g the

closure of a decision

Fig. 6 show Ihl" lavc_nl _d" Ih_" screen ,lllrin_ a lyl,iCal I)-Ilyp,'r('ase session.

The scr,,en <.¢msisls ¢,l:s,,v,'ral 'win,l,,ws 'l'h,' I:_r_," _,_,l,,rlyin_ willdt_w ccmtaius

the d,,cisi,m graph (which ,:,,_ I,,, I,l,,uKhl t,, Ih, I,,r,'L_,,un,I ,,n ,I,.,,_aud). The

large window on th,' righl is th,' _,dilor (m,_,lili,',l I'ii_:us) wi,.Iow I'_r all ob.iects

which belong Io the sups,re lass cff Icxl oh i,'cl_ 'l'h,'s," Iw. windows are always

open. in addilion, lhe ns,.r m;Lv ,g,c, sev,,r:d ¢,lh,'r wimlows. Fig. 6 shows

several read only win,h,ws for diSlAa.vh_g vali.us inf_rm:llion alld a graphical

editor window 1o be used fi,r creating d_<.uinenl tig.r,'s Each of these windows

contain a menu for accessiu_ holh tool specific and I)-Ilvper('ase operations.

Surrounding the d,.ci_it*n g,alAI win,h_w is a I,ackgr,_uml which can he se-

lect.ed t.o access lhe I)-Ilyper(';Is," backgr,,und nwnu. This menu allows direct

access I,o the hylH'rlink r:..iliti,,s, such as linking, i_, ;_m.h,'r ohjcct or tracing

backl,oobjeCtSl>reviouslvs'"'n Ilsmglll,'l,ack_r,'ln'lin"nu, fhc user can access

the doclinlelll, base evell'wh,'ll Hshlg, lo_ds which (1_ 111_1h;tw' a direcl, interface

to the AIIM.

OPJG_T-!r " _"'_-"

" ;-_"-. ,7; : : i"

qqrt_p

D-HYPERCASE : USER PERSPECTIVE

Obiects

Rulel }::i::_:_i!:;i

Rule2 fi!#;m

Behavmr

grammar

i::::::view !iiiil

' _i?:!i!i!!iii::i!i!i!i!_!i!::i::i:-:;I

.;.:.y.:::.:..:.:.......

'........................DocumentFigure

i

l)ecmontsotuuon) 1

Jusu flcation

D_ument Descnpuon

TextFnei!i_:;iiiiii!i!iiiiii?!!i_!iii!iii!_!;i;iiiiiiiliiii_!ii_iiiiiii!_

•.,,-- - {usti_csUOn link Decision Graph

Solution link

i

Overvaew I

o • I :::: :5:::2::::::::::;¸:5:

D_HyperCase

Decision GraphiCs
Graph Editor
Editor

: [i Soarer
Text

: Eaitor Code ::
: :.... : Editor :"

O_y il

User Project

Ca se Tool s :

Tools

Hyperlinker ,,¢
" ..dr - -- name link

Problem:

Soluuo_s:

Ahernatives:

,,,s,ir
The..t _-,gu,_, .jls...

tructu Chart

Data Flog
Slices

ADT

Complier

Debugger

D t-lv'_,erCase:

Program AmmaUon

Assessment 1 e= 3,......../....--"
::.:._:._{_{2.iii:-_:.!i_}_i_:_:i;_:_i#i:!!. - . ,

i Decision2 [Decision3 _ 'source-v,ew

'debit, n--view'

s-link

Figure 5. D_HyperCase Introductory System

[1

!

!

Old Dominion University

Source

Code
exfi tor

window)

I

I i l I I I i I I l i I i l I I

18

D-HYPERCASE : USER PERSPECTIVE

read otdy v, ilt(Io_ s

Overview]

menu canvas c(mtain decisi_m gral_l

D_I lypcrCase Editor

Decision Graph l'ditor

Graphics I:,(lilor

one writable

editing window

Source code (or

textual) subwin-

dow

menu display

help screen

emacs ct_l rol

docmnent figure v.imlow

Figure 6. Layout of D_HyperCase

Decision-Based Software Devehqmwnt "I b'_ign and Afaintcmtm e

Old I)r,minion University

19

5 Results

We have developed I)-IlyperC,_qe using the I)BSI) approach but since the sys-

tem did not exist when the project frst started, much of tile documentation of

decisions was done manually. Also during this time, we were still developing

and refining our approach to DBSD. Despite these difficulties, we felt it was

essential to gain experience with our approach and to define and refine it on a

"real" system. The results reported in this section are preliminary ones based

on these early efforts.

5.1 Evaluation Criteria

Performing a cost/benefit analysis in software engineering is a difficult under-

taking. Many times, one must weigh presenl, costs against fiHrure benefits. If

the period of evaluation is short, then anli-regressive activities (such as reor-

ganization and documenlation) are penalized relative to progressive activities

(such as adding new flmctionality), llowever, the importance of anti-regressive

activities is well known. The success of current progressive activities depends

on past anti-regressive activities, l,ehmau and Belady [BL76] have found ratio

of effort between these two activities changes in recognizable cycles. Spurts of

progressive activities are followed by p_riods of anti-regressive activities to con-

solidate, reorganize and document for future progressive activities. Any period

of evaluation shouhl include both progressive and anti-regressive activities. We

have identified four periods iu which evaluation cau occur.

System Life Tilne: A cost/benefit analysis is (lone over the life time of the

entire system. Allhough this would stl_t)olh over any cyclic effects, the

life cycle of ninny sysI._'IIIS iV [O(} IOIIg t<'J III;Ik,' this a praclical period of

evaluation.

Release: Most. large sofl.ware systems go through a sf'l of releases over its life

time. Each reh'ase usually represents a significanl change in the system

in which major probhrnls are rectified and new features are added.

Task/Change Order: A task represents a unit of work to be performed. A

task could be defined in response 1.o a trouble report or could represent

the addition of some new'feature. Typically a task r_presents a work order

to a single progranmwr or l_rogranuning learn and is the unit of activity

allocated by nlanage,tmnl.. A systetn rch,asc consists of many tasks.

Session: In order to perform a given tx_k, the programmer interacts with the

software development environment during a session. A session represents a

contiguous period of time during which the programmer is working in the

development environment. One task may take several sessions or several

tasks may be completed in a single session.

,..v ,. _ IS

20

One can evaluate either the products of development or the process of de-

velopment or both. Product mea.sures emphasize properties of the product in-

dependent of the mel.hod used'to generate 1.110 product while process measures

deal with the dynamics of the process and its effectiveness. Product evaluations

involve measuring size, lines of code (LOC) for instance, reliability, and the

other "tittles". Process evaluations involve such concerns a.s, how much effort

went into understanding the problem? in implementing a solution? How many

errors were introdnced theu corrected before the prodnct was approved7 What

productivity was achieved7 What level of reusability was reached7 What level

of effort went into unit testing vs integration testing? Wllich of the phases of the

life cycle is least effective7 most error prone7 Sometimes product evaluations

are used a.s indicators of the goodness of tile process. For instance, the number

of LOCs produced in a unit of t.inle is a typical nlensq|ro of productivity.

We feel that process evaluatiolls are ituporlald iu tHidorstauding the strengths

and weaknesses of a melhod all(l ill identifvitlg ways in which the process can be

improved. For example, sonic (levelopulent sysl.ems are able to produce some

documentation automatically and this increases productivity as mea._ured in

product output, liowever, if this documentation is ignored because it is dif-

ficult to understand or irrelevaut, then real effort is not reduced and process

productivity is unaffected. Because of the Iilannal nature of the data collected

for the results report in this section, all of the evaluations are based on product

metrics. In section 6 the instrtmleulatiou of D-llyper(_ase to collect process

tnea.,_ures will be discussed.

One measure of the cost of a ulethod, is lhe ;nllollnt or "extra" documenta-

tion that it requires. Since only tile (unco,mnmlted) source code is absolutely

necessary to generate a workitlg system, all other documentation is "superflu-

ous" to the current version, l]esides the cost of the effort required to create

"extra" documentation will he the cost. to mainlaill it. during tile product's life

cycle. _Ve estimate that the added information is about lou percent of the source

code and is roughly equivalent to the amonut of coll_inellts ill the source code.

The number of keystrokes aud mouse clicks ueccssary to provide tile linkage

between the source cello and Ihe decisiou is on the' order of one percent of the

sonrce code. We asSlllllO th;lt adding Ihoso lillkago ('nit be alllOl||nt,od t,o a largo

extent by requiring thai. all docuHletd.ation Iw entor_'d iu a decisiou view. Thus

once a view is identified, all lines added are associated with that view automat-

ically. All the updating of the links altd nodes to ensure consistency is done

automatically in D-Ilyper(rase. Associating a region of all exist.i,lg document

to a view can I)e done by itHlicatiIDg the r('gioll iu Ih," s;llue tnanner done for a

cut and paste operation.

Measuring benefit is more dillicult. Benefits might be measured a.s in-

creased productivity, increased reliability, decreased costs or development time,

increased portability or maintainability. Unless a comparative study is done

against others methods, the results represent only one data point which can only

be compared to general statistics reported for the soft.ware development indus-

ORIC--_L" L PAGE" IS
OF POOR QL!_LITY

21

try (such as the number of LOCs per person-month). Using product oriented
metrics to measure I,he productivil,y of soft, ware maintenance tasks is distorted

by tile distribution of effort in I,he software maintenance life cycle [Cha88]. A

large percent of the effort involved i,1 a maintenance task in understanding and
analyzing the existing system [lINg0]. For instance, there is a high degree of

variability in performing corrective maintenance tasks. A small oversight can

be easily corrected, but a subtle problem which has plagued a mature system

for several years might take quite some time to discover. Using the number of
lines changed or added would not be a good measure of productivity in each
case,

In section 3.1, closure was defined as those portions of the document base

relevant to the performance of a maintenance task. Finding the relevant parts
of the program can he a difficult task, parlicularly if Ihese parts are scattered

throughout the source code [I,$86]. The ideal closure wonhl include exactly
those portions of the document base which are relevant to the task. The manner
in which the document base is structured will determine what closures can be

formed. The actual closure depends then on the structuring method and the

granularity of view point it. imposes on the document base. Documents can
be structured by modules, files or objects (for source code) and chapters and

sections (for other forms of documentation) or by deci.qious. The degree to

which the actual closure thatches the ideal closure can be used a.s a figure of
merit for the structuring nwlhod. If the act,,al clomlre is a proper superset of the
ideal, then more effort will be required to perforlll the task because the extra

documentation must be underslood then discarded (or worse misunderstood

and changed inappropriately). ()n the other hand if some of the ideal closure is

not contained in the actual, then it is possible that the software engineer will
introduce a fault into the lank hecause some key piece of information is missing.
Precision refers to the degree of match Iwtween lhe aclual and ideal closures.

The measure of precision consists of two couq_onenls:

1. The amount or percentage of the acf.nal closure which iv relevant to the

task. If expressed as a percentage, this nul,d,-r represents the density of
relevant information in the closure. One min,s lhe density is a measure
of the "noise" in the actual closure.

2. The amount or percentage of the ideal closure which is not in the actual.
This is referred to as the oversight of the closure.

A second measure of the goodness of the aclual closure is the number of

structuring units which were used in forming that clos,,re. Each structuring
unit abstracts some aspect of the document base. It. represents a set of related

concepts in the document b_se as a single abstraction. If this representation
helps in the understanding of the set of concepts then it is an appropriate

abstraction. All other things being equal, the fewer abstractions one ht_s to
deal with to perform a task, the better. Carried to the extreme however, this

22

would lead to only one abstraction, tile system ilself. One also needs to me_sure

the appropriateness of the abstraction for the t,_sk. Precision can be used to
measure the appropriateness of the set of abstractions. We define the power
of a set of abstractions relative to some maintenance task as tile number of
abstraetion_ used to form the closure of that. t.a._k.

In addition to counting the number of abstractions which form a closure, the

size of an single abstraction can also be used as an indication of "abstractness".
The size of an abstraction is the sum total of all documentation related to that

abstraction.

5.2 Evaluation of a major release

The results reported in this section are based on an earl)' demonstration version

of D-IIyperCase. This demonstration was l,ut togel.her by modifying and en-

hancing several existing software systems. A graphical editor under development
at Old Dominion University w_.s extensively modified 1o build and maintain the

decision dependency graph. Several new fimclions were added to the GNU
Bmacs editor to edit structured text and an Abstract Ilyperlink Machine was

developed which allowed these two edilors to communicate. For SGKBS the
changes could be considered a major release of lhis software. Many unneeded
fimctions were removed and new functions were added. The size of the source
code went from 9000 I,OC to about 6000 I,()(3. The decision structure for the

ohl version of S(IKIIS w;ls reengineered and f,_r IIw n,.w version was recorded.

This was done before lhe II,'thods and melrics of ev;duation were decided to

avoid unnecessary bias in creating the decision slr'ucture. The number of LOCs

added, modified and deleted were counted.

This preliminary evaluation compares the functional and decision views of

the system. In the filnct.ional view. it was assumed that the system wasstrue-
tured only t.hrough its funcl.iotm ;_nd th;_t Ill,, filnction w_s the lowest level of

granul;iril.y iTt this sl r,,cl.ur,.. 'l'hus Ill," :u'lH;ll cl,_s,]r,, ,ff a l.;lsk was Iotal [,OC
found in all relevant functions. Ill Ihe decisioll view. llu' lowest level of gran-

ularity was the decision and the actual closure was I.he tolal I,OC: found in all
relevant decisions 6

Fig. 7 shows the size (in I,O('s) of the average and largest abstractions in
both the functional and decision view. The average fullclion contains 57 LOCs

(about one page of code). The average decision co,fl.aitls 220 I,OCs. By the size
of abstraction metric, the average decision is 3.9 times more abstract than the

average function. This is a surprising result since it i,nplies that most times
tim solution to a problem involves nnlltiple filncl.ions. We had insisted that

only problems which had viable alternates be recorded in the decision strue-

8We &-,.qume that for both the fimctional and decision views there exists an indexing scheme

which allows the user to select the relevtmt time!ions or declsinns. This is an interesting

problem in its own right similar in ,_ome ways to the indexing ._ch*'me required for a reusable

software library.

23

ture. Subproblems which were tile decomposition of problems which required

no decision making (that is they were purely transformational decompositions

with a unique transformation) do not appear in these results. We feel that, this

is just.ified since in maintaining a system, one can only change the solution to

those problems which have viable alternates.

The largest decision for SGKBS was which window system to use. The two

primary choices are the window environment provided by SUN Microsystems

or the emerging X window standard. Since the existing SGKBS had already

che_en the SUN window environment, we stayed with this decision for the initial

demonstration. Ilowever, we wanted to _.ssess the impact of changing to X

windows in the future. For an interactive graphics editing program like SGKBS,

the impact of this decision is pervasive (as will be discussed in t.he analysis of

the precision of the functional and decision views). This decision impacted

almost. 1700 l,O('s. This is ,I.7 litwws Inrg, er that_ t.he hrgest tither.ion. Again

this indicates thal., by the size tllelric, decision views ;_re nlore al_stract than

functional views.

The activities involved in generating the new release of SGKBS resulted in

the addition, modification and deletion of LOCs. Since the effort required to

add, modify and delete I,OCs is different, the results for the power of a set

of abstractions are separated into three calegories shown in Fig. 8. Again,

these results indicate that t.he decision view is more abstract (involves fewer

abstract.ions) than the functiculal view.

Although the decisiowl view is more abstract thai1 the functional view by the

power and size mem_ures, there is the danger it. is too abstract and lacks the

precision to support the lllaintenallce process. Fig. 9 shows t.he precision results

for the average and largest, abstractions.

The average decision impacts 220 l,OCs which are dispersed throughout 12

fimctions. Since on the aw'rage 12 fimctiotls contain 6,q.1 LOCs, the functional

view requires the software o,gineer I.o road 3.1 t.ilne_ ms much code Lo understand

one decision as the decisiou view. The code for t.he average d,'cision is dispersed

through the related functiolls at a density of .32 (I ov,,r the ratio 3.1).
The decision with the greatest impact. (the choice of win,lowi,g environment)

affects 1699 LOCs. These I,OCs are dispersed through 10.5 fimctions (about

95% of the fimctions). Si_|ce these functiolm contain 6,124 I,OCs, the density

of the fimctional ties, re relevant to t.hi_ decision is .26 (1/3.8). Using the

principle of informal.ion hiding, it could I_e argued thai. if it w_.s known that

the choice of windowing environment was suhject to change, then it should

have been encapsulated behind a module or package. We would disagree with

the practicality of this solution in this case. 'l'ryitlg t. hi,h' all the window
functions behind a module wouhl be the equivalent of writing a new windowing

standard (as defined by the set of interface calls to this package). This is clearly

a major undertaking in its own right, probably greater than the writing of

the target software. In addition, this interface must be sufficiently general to

2,1

.llow alt.ertlaLe wind()w (,Jwir(>um'ut philc_._)ldlh'_ Io I,. hidd_'l_ Ih_'r_'in. It. i_

nol. citer t.hat, l.hi._ is d,'_irahl_', prac'(ical (_r fl,;i._il,h.. Ih_w _'atl o11_"amdicipnl4" all

approaches to windowi,,_.':' '1'1.' I_hilo._oldly ,.mld,racf'd ILv ll." wi,l_l<,wm_ ._vsl,-m

may result, in a ¢erlaill al_Pr_ach Lo solvmp, I_l',_ld_'m_. A chauK_' in philo._oldly
would diet, ale lhal lh_'s_" d_'ci_io.._ I_" rl._.xmHill,',l a_HI I-_._sil>ly _'ha_,_'d Io best

l.ak_" a.dva_d.a_,,_" o1" Ih_' u('w Id_ih,.(qdd_'al ;_pl_r_,m'h. Ili(lil_, l,h_" I'_'alm'_'s which

on," _uvirol_,u,-,ll .lIpl-_rls w,.ll ,.'.'ill r,'.,dl i,, iw,lli,'i.'n,i,'.. I_ I'a,'t. _,_," _,f t,he

ot'ils u,,i_lu,' fi'al,nr,'s. %%'h,,r(' f,*asild_,,..'..h*,,,I,I hi,h" _l,,_i.i(ms, I,.t lhis is w_l

always f_-a._ihle or (Iosirald,'. ;

Fig. 10 _ives Ihr' I)l','cisi(_l_ r_'sulls for I.()("_ ,,i,_dili,',l aml d,'l,'t,'d I'r,_m both

I,h_' dc'Hsir, u and fi,u,'lh._al ..i,.ws

I. _'h;m_iu_, N(;I.:l_l_;. 2:1:1 I,()('_ w,.r_...,,lili,',l. ',,.!!1:_;I;l,()('s _'.('r_' (h'l_'l,_'d

a_(I F_:II-; I.()('s w(.r_" a_hl,.,l 'l'h,' a,hh.d I,()('% w,.r(. Jl_ the. u_.w d(,¢kio.._ and

I'_ncl.ious al_d ,g d_.('isi,,.:. ,_,HI;_il_il_ Tgl;() I.()('_ :_u,I ",:{F_ll].()('s r(.sp_.clively.

All.houKh t,h_. r(.h.va_('_' ,I,,_sil ', (4'tl.' ,h',i_i_,. '. i_'_', is I-.I I,'r lhal_ Ihe fm)cl,ional

view, ;leil h_'r vi('w ,,v:_sl_arl i('.larlv _oo,I _1 l,r(.('i_'l', i,l,'l_l ifyi.,g Ihr' I.OCS which

m.._l. I." modilk'd. A II h_.)_h (_l_l) 2:1:i 1,()('.";w,'r,' i. i h,' impb'tm('ut al ion clo_r_"

with resp,'cl to tu(_ditic;_li*_u. ','.'_' ha,I t_¢_.,v;_v ¢,1 lll,.asllrill_ lh(" m_(h'rsl,at,dinK
alld ass_'S_lll_'llt ,:'lOsllr,,'_. ('l_.;_rl'. Ih_. s_fl war_. ,'_Ei_'_'t will (.X;llllilll" and aualyz_"

I.()(:._ whi('h will ._,l h,, _h:_._.(.d ,,r _h.b.l,.(I ;_n,I lhal Ihis is m.c_'_sat'y in _u-

of Ih," d_.(-isi, ms ¢ha_,',l in n.,__' _h.lail I,, II(.lt.llllill,' wily t11,_,d_.('isi_ ('l(_lt','

s."('m_'d s<)impr_'('is_' %%',',li__v_.r_'d thai il_ Ih,. m,_,lili,,,I _,(;KliN _..w i:,rohh-I_S

_'xamph' iu the' _>hl _v_.l_'l_ Ih,.._h;_l.'S ,d Ih,' _raphi,;_t ,,I,i_',ls had u_) m('auiu_.
In the u.'ml u_'d 1_ ,'r,'at," _dW'('ls, I1.' na_.-_ ,lislda)_'_l ih_.l(' r_'l'_'l'r_'d Io l.h_'

,_,.(',l_,'lrir _hal-' (,_,.h :,_ r,.('l;,u_,h" ,_r ,w:_l) In Ih,. i_,,.lili,'_l g<;I.:l_;.g, w,- us_"

l,h_'.g," shal-'S l'(_r Sl-'('ial purl-,_.,'s, lhus ;in ,,',al i,'l_l,':-.,'Hl_ a p,rdd,._,l uod," al_d

;_, r('_('la,_],' r(.pr,.s,'ld_ a _l,'('i'-:i_m ll_>¢h', 'lh,' ._,'w .ff, sl,'.,_ iulr_duc,'_ l,h,' ll_W

a._socialc'd wil.h ,K_'_wralin_. _H_'l_u I;d-'l'_ w;_s parl ,,1 :_ _m('h lar_'r d,-cisi¢-,. <)_

the p_'om_'trical .hal-'_ (_l' _d,.i,'('l._ :rod II..ir di_pI;Lv (whi_'h K('(_m_'tric ob.i('ct.s

sho,dd a,.I could I.. diSld;,'.,',l) ()m'(' Ih,. i_,.w i)r, dd('l,, ,)f a.s(,('iali,_K a _,'_la,l-

I.ic ol,.i,'cl (l)r()hh'm (_r (l_'_i_i(,u I,(.I,') wilh :_ _.,.(,1_,.I ri, shal-" was il_Ir(:.h,('ed.

l.he I',r('cision of Ihal. d,.('isi(.i il_(r_'a._,'d ,Ira,,,ali,;_ll,.

Siuce it, is u,_lik(.ly Ihal all us,'_ oF llw svsl,.Hi will I>¢. a,_l.icil)al.,'d il_ lhe

original design, w_" ,'_,'.isi,>. a _rowlh i,I lh,' I)r,'_'isi(.I ,,f lh_" l)rol>h'm solving as

s:_'at_"lll ill X. |11 f;l('| NITN ,li'-.llihlllr". _11,'11 ;ill ,,IIIIILItHI 1,HI I.', ,_,l_,' (,f i,_,',,_,l_;_,¢ihilili'"_ _(_,.r

ORIGINAL PAGE IS

OF FOOR Qt..; !'!"Y

_5

remmll,of mahHMning tl."svs¢cnl. ']'h+.ahiliiy t,_r_'lit.'il."d_'ci,_hmslrueluro

t,hrollgh I1_ is hnporlanl f<_r hlHial dPsi_ii ;Hl<l f,,r lh<' r,.x+,'rs,' ,.ll_hlc+'rillg _ffo×-

isliug drsi_lls. It would ht. ,t luistakP Io hHr<h',l il.' itlifi;ll ,l,'si_;n tcam ,,villi the

task oi" hlr',It, ifyi,lg ail!l do,'1.,,.'nlh1,_ all p()l+.IH +;,l ,h.ci_h+,1 l+,1,hlls ill file sysf,eln.

FLat+her, thc'y shouhl d1_,1"uJl..vll italy l,h<+Jsl' d,'+'i_i,+,n +_+in whhh x+'ariol,s +'IIIPPII+R|.PS

+Pre acfively in,,'<'mlig;,_t,'d atld !in:dyz+11. ll'lhlriuD_ vlmillt,'u:inl,"1' ',+'i;'+hle ,_If,c.rl,+al,es

l.o cc'rl.aill dqr',qigl| l+r,++,hh'i,,s h,'+'++,u. • Pvid,.iH <,r i,,.,.v l_r+,hl,'i,,s hPeoill_" il]+'lliil']P(l,

lhPn 11,1" dPcisi+,nl slru_'tun++ ' ,;in I>i. rPfillcd l<, r,'ll,'<'t this t..,,v +tlsighl,. Thus of.'

lll_y diseovr.r rt useful d,.risilm +<.+HhslrH¢lHrc ,+U ;i l+r<+hh'll_ which orighmlly ar'-

pParPd to Imv1" l>c,.ll a 111++ll++lilhic solul+i+:,n. _+Vilh r,'sl++'<l l<+,rl,vl, rsP olt+illt+'l'ri11+

flip (11"rimiOll struclHrc ,*>n au ,'._+.'.;lillg s('_fl',+..';ll'_' s_.+-.t+'tll, lhl. l+1_smil,ilily for ral+_ill

growth of l_rc'risi<+,u will _..'++u lh;_t ;_ ll_.+.rtll d,.,.+...h,l= mllll+tllr! + Call I+i' +11Olll+l+iPd

on fh<',_" l,1_rfi<+m+ ,,I lh,. +..+_l,.I_ which :,r,' +ul,.j,.+t _,, lh,, _N,*,+I ,'h;_tl_'.

'1'1,' +>rigil_al v,,r_i_'+ll ¢.1 '-;(;KIL'-; ,'<)ill;lill<'_l ;t iiiiiill,,,r +.1 I'_,.:_tlll_,.,.;wllich +,,'i,rt,

uof I.+e&'d rot I'>-Ilyl+<'r<';;.+-, ". I+,.uloviu_ Ih,.s+. I+.;_l=lr+..< _','._m;_ illajor [+arl. or
the work <hm+' hi r++t_v.'rl i_. 5;(;K llH 'l'h,' uuN,',',h',l l',':_lHr_'+ <,,rr_'sl_OUd+'d to

1_ I+tl+hl-II_s whh'h u<_ I,,l_,.r u,.,',h',l I+, I....,,1_,.,1 I+,.l_.,vil_. I1.'+_' dt.risi<+ns

allll 11=I" r+'lalcd <'_<h' <h'h._,'<l ;_lti,,:,sl 3()(]11 I.()(+- I"l_tll lhc fllit('li<:,,l;_l '+'i,++'w,

75 F_Hlcfi1+l=s (¢1",_If:6.inK _I I+) l.()('s) 1',,ul,l I,,' ,.lhHinl:+l_'<l _._llit+'ly. Th+" row

lll;:irk+-_l "fHtl+'fh;ll;ll(tl,'l+'t,'<l)+'" _h.+'s r<'sHll+ I'<,I lh,' +'I,','_II'+' c1+H_i.*,.qillg ollly oF

lh<)s+" filll<'li,_'Hlm v.'hh+h ,,._hl h,' <h'h't,',l if, +h,'il ,._,_+r,'l'+ \s r;iI= h,' '.+,"<'n. l,his

cl_+rHr<" <++.,'='l(+<+l<,',l:I l:*r_- l,r<q,<,rth,I_ ,,I" lh,' ,,l,*.,,h'i,' <,-I,' I_ lh(' row i_mrk1"d

-rul=,+.l h+l_:_l(,l,.l,.l+.,l]:, "' :ill l,_u, ii,.i.. +'.+lll:t+llttit'. ,;I I,'I,", ,,,l,' ;,r+' iu,h.h.d h_ +h,.

+-h_,.+r+ur+, If, lhi_ +;,_<+,:-.II_,, l,,l+,v;_li<,' <l"llsil) +'+'1''"_: 'I I+is ;_;,+I_ ill,'lic;ll ,+`<<III;_i

the l+unrli1",ual _.'h'v.' +I++<'+<u,,l l_.q+ '+'.','II,+,lit,, lh," ;_+ti'.ili,', +<which nr+_"l,+'rl,++,ru=,+'<l

,!lllrin++; ll+;lillf+'ll;+ll+ I','. I"+H ,l,'l,'l,'d <'r+,h'. lh+' ,l.,'F.h,u xi+'w i:.. +iK=lifi<'a_Ifl+x + IIIOr_'

pro¢is," lhan fh+' lu.,'l i,,u:_l xi+..'

6 Disc ssio

Wc l>PliovP lll;tl the' I)I_,_<I_' :_l,l,r,+;_h I,+_lh,. +h.,.,.l,q,i,l,.==t ,-,l L_1ffl"v:'r_" symf+'nls

roi+r(.s+.llf.+,-;;+iSi_l_+liC;_l_l :_H,I t._'.+<'l all<.ltl;tl ix+i. I,_ ,.xi_l iil_. si_l'l v-.;tl'<, d,.volc, l,m,'_H

l>aradigms, lh+'.w"+_'r +;u_-,'xI,,'H,'I.,' with lhis it.'lh,.l is slill limil1'_l. Thor<'

is sf, ill much work I_ h," d,,u," iu d,._.1.l,q+hlg _uhl<'lih,'+ f_,l+ _Isin_. ;'_ I)P.SI) al l-

proach and in inleEralhl_ I)I_,SI) il_l<.+ ;t s<',ll '.+v;_r,. d,.x,'l<:,l_,lll1'lll l_.'thodology.

I)-|lyprrCasc' was hHilt f,+ ..,.rv,' ;_s ;u_ i'Xl,,'rh_,'l_l al m,'di_ln_ For _'Xl,loring all<l

dcvPI,r',l',illg the I)I{SI) I,;_r;I,ligm Ih+v,,'x+,'r. i,i ;_u', hire,' ..-.ysl,'tll i+,1," Iu_ls lho risk

of burying gt+_o<l hh.;,s ;u,,,.,_ I,;.I <,n,.s ,)r i=_ :_ l-.,r it_tl,h'_,.'ul;'+fi+ms. Siml +'I°

cvah,alious, m,,"h as r,'l-,tt*',l i_t 11.. l,r,'vil,_t:+, s,.,"li,'.H, will u<,f IiiIcovc'r sul)tlo

i,roH,+-=ns <+,r ;.lx+:_=+l;=,_.,'s lu +hi..: r,'_,.;,r,I. ;t=..,+l,,l;_l +.,.+H_=:_li,,u i..-:,-+fit.It it_q+,'+,rlatH

ill fOCll:-.illg ;llf,'lllit)ll <,It Ih,' i'lilic;ll is:'+.tl+'s Ill thi'- .-.,'*li+,,_ xv,' ,lis*'uss <.lr _'x

pcrieucem iu <IPv,'h_+l>ing I) ll+vl,<'r('as_' ;itl,l ,,us I+I;=. '- l,, itl'..;fl'lllllt'llf it l,o coll1'cl

nlorP dol, aih'd d;H a f+:,r flirt l_,'r <',.:tlll;+tl i,+u

ORiGINaL PAGE IS

OF POOl,' O! V',' +',W,

2(;

The I)P, Si) al>l_roa('h is iml ;i I)ana¢_'a f(,r all lh_' ills I>l:lgUillg _lle software

engin_'ering conununily. Whih' we ¢lainl Ih_, d,,cisi_m sl rHclHr_" (';Ill I)e us_'d to

provide mldtil)le "nat urar' views of i.he soflw:lr_' s3slt'nt rel_'va,I1 Io tile devel-

Oplllelll. process, tile definilion of the derision gr;Lph is m'ilher ,';isy tier obvious

at first try. lhl(l he gem.r;lli(_n ()r ¢(>mlde× _l_.tlls i_ i1(}1 all i'asy un(It'rl.ak-

lug [l}ro87,1)ar85}. The dl'f,'rlnillalion and art icuhll i(>n ()f file (leeision sf.rtlef.llre

requires ,all exl)erit'nci'd lWl'stul, ()m' wh() t':ll_ ul_,l,,r('_cr the' Ult(h,rlying prob-

lelllS and relalionshil)S which .justify ct,lfai, _,,hlli,ms lht'r_, is ;i lentlency to

sl.ruct.ure the (l_'cision graph using Ih_' t('ml)(,ral (}r(I,'r in which d_'cisions wore

ma(le inslead I)y IleCPssary dt'l_endencies. AI_()lh_,r_, is file lell(lellcy io i(lenlify

(lecisiolls wilh funcli_ms. 'l'h_,rt" is ;lls()n{)l,':l_,_l 1,, h,'lieve fhal file i'lecisiOll

graph is lllliqll_" A nl()r,' ,'xp,'ri,'llc,,,I _i,,:_igll,.r _.',ill ,'xpl,)r_' ll_l," ;tlf,,rnafiv_-s,

st,t, nlor_" r_'l;ifi()l_shil_s I,_,tv,,,_,l] l>r_,hl,,m_ ;ln,I i,h.nlif 3 I,,,ff,,r .iuslifi('ali()ns f.hall

a loss eXl_eri_'n('e(I ¢(_ll(';IKu_" I)(_¢unwnting lh,' (I,.ci_i(m _lrllclllrP l)laces all ex-

Ira hurd_,n (m lh,, s(_rfw:u_.,,nKin,,.r I/,,cl_l_l*.i_lali_,n i_ Ih_, prier- t_n_, I)ays f{_r

inrrt,as_,d i_l;linf:_iH:_l_ilil,, ()Nr cxl-'ri_'n,_, iti,ll, al_.._ Ih:_l ,l(wHlll_'l_lhlg, Ill{" dt'ri-

si()ll slruct urt, _lt)t,s Slll)l_(,rf Ih,. ,l,'_iKll I_r(-'r_ I,_ I""cli',illL_ Oil Ill,' i(l('nl ifi(al i{m

of alf.erllalt's all,I .iHsl ilicaf i,,t_s

I{('ver._e engin,'_'ril_K fh,' ,I,,risi_,l_ M rllCltlr,, ,,I ;111 ,'xi_,l ill g S3"NI_"III is dilliculf

and ill S{)lnt' cas_,s ilnl}()_.sil,h, Th,, (I,',*i_i¢,_ _.llll(llllt' i:'. tl(ll ill lht, i)roducfs of

dev{'l{_l>nwnl. Oiily i):lrl i;il ,"¢i¢ll'llC_" _r Ih,, (h,ci_i(,n IIHkinK I_;I 3" I)_" i)resc, lll,. Ill

nlany ¢as_'s, (m," will ha_,, It) _m,ss :ll the' i;tli,_ll;_l_'_. I.,hmd t't,rl;lill (ll'¢isir)llS.

II is illllikl,ly Ih;ll r_'v,'rs_' r'll_ill_'t'lillK ,',ml,I I,,. ;llll_,lll:lf,,{I f_)l* Ih_" f{_r_,s_,_,ai)h,

fulur< 'l'ht, (lillicHlly m _,,_{,l_.,. _'nZim'_'rinK I1_,, ,I,,,i-.i_,ll Nllll(flll_. is ()lie ()f lh,"

rea.,:;OllS software, in:_il_l,'n;_m'_',i,_ ,-} (lillicull. 'rh_, I)1_;I) ;ll>l_ro;tch (Io,.s ilol,

Ile('¢ss,qrily III;Ik_" Ih_" r,,w,rs,, _'l_4im'_'rin_, _'asi_,r. I,lll il ,l{,_,s all_>w l ll_, soflwar_,

'ngine'r l(_ r{,cor(I Ih,' illsighls Ihal ,'_l_' Kain{',l ,lurin_ :_ I_i;_inl(,llallce l;tsk with

r_'sp_'cl It) Ihe (h',isi_m Ml'ltClllr_' sl_ lh;ll Ih,' I_,'xl lilll,* l_miHl_'n;llw_' is {Iollt' (_ll

6.1 DBSD Mct, ho(l()logy

We believe fhat Ill(. I)l_,_;l) :_l)[_r();ich I(, s{,l'l_;ll_, (I,'_,'l_q)lH_'nl can Im incor-

porale(i ill Ilialiy di[rer_'nl m,,lll_,h)l(_Ki_,s. IH this st,el i(,n. _.'veral (_l)servations

_ti)(}lll. II." illlhll'll('(' t'_f II1_" I}1_;I} I_ar;uli_. (,_ _l,'l h,.I,,h,_,y will h,' nlad< _l;llly

{>f lh,'se ,,I,s,'i'v;_li(_i,s r,,lal,' If, lh,. i,l:lnn,,r in _lii, h fh," I)1_,_1) :_lq)r_mch allt_ws

Cl)llt'llrl,'lll i_r(_g.l,'_s _,= ,lilt,l,llf i,h;=_.,.r. ,,1 Ih,. Iif,. , _, I,.

Sohll;ion First. It ()fl,.ll ,.asii.r I{, i_h.lllil", Ih,. _,,)ltlli()ll Ihall Ih,' I)r()l)l,'lll if

solves. This (li_¢ulty is ll()l i>arliclllar If} Ill,, d,,cisi,>n Im.,_,,d alq)r()ach. II fakes

great skill t.o llllC()vt,r Ill,' I,';ll pr{d_l,'nt wh,,ll Kiv,'n ;i lisl (_f w;lllls all,I desires.

End users fin(I il hard If);Irlicl_l;If._" Iheir r_'al n_',',ls I,ul can t)fl_'n re('¢)gHize when

a proposed soiiHion niGh,Is {_l d()t,sn'l lll_'_'t lht)_,{" I_'_'_ls

G*_n(walizati()n (ff Pr_l)h,nl. In I_;_Hy ca_{.s. I1_, soluti_)n 1(} ;I I_arli('ular

problem can Iw _;llisli(,_l I>v _,_'m'r;llizing, fh{, i,r_l)l,,m. _(,h ing Ih_' g_'n_'ral l)rob-

ORIGINAL PAGE IS

OF POOR QUALITY

2?

lem l.hcn insfanl,iaLi..K lhe _e.r'ralsol.li(m E. lID,' _.igi.nl probl,'m When

we first, slarlc.d develol',menl of I)-IlyF,,_'r('as, '. we had only two:, lo,n]_, l':macs

and SC;I(BS al'J(I no separal,p Ilyp,"rl.ink machi.,,'. %%'_'lirs;t, Iried Io I,uiM hy-

perlinks hel, ween l;:lllars all(I S(_ I(I:LS bernre w,. r_'aliz,'_l thai, u.-e could solve t,he

more general prohlem, resullhlg in I,].. Ilyl..rl.hlk Machhle, and use iL l,osolve

our 1_arl.ic.lar I>rc,blem, Once lhP more ,Ken,'rnl I,roldelll is rolved, ,'xl,endillg

l)-l[yper('ase Lo oLher tc:,c,l.s;is .Im'h siiHid,_'r sin,', ccmmmnicatiot_ froill a 1ool is

always l.o (he Abstract llyperi.ink Machine aml do,.s.'t change as more ob.iect

types, operations aml look are added.

Finding a II,ationnh.. Somel.im,rs Ih,. ;,dler.ales Ic, solvi.g a problen,J can

be idc.ulified aml an;dyz,'d I,ul lh,.re is n,_ (d,vi,.is I,r,'F,"rr_"d cl._ice, lit sllch

cas,_'s. _>n,p to.hi ,"ho,:_s,,. ,',.. ,,f I h,. :lll,.rnnll.s ;irhil r:,J it',.. 'FI,p In,"k _,l'cl,.:lr cril,'ria

for choc, s;ing au ail,r'rllalr I'.,IHS I,F:, all ill,-_..Idm,'.,".s m f]H" rPquii-elllc'nfs. Ill

developi.g l)-Ilyl.'r('ase w,. fl.ind tl,;ll ,h.v,,h,lfi.K ;, r;,li,m;,h' ¢_Ftpn i.volved

l,he refinemenl of a _en,.rnl lu.l-I.ncti_mnl rP, lllirt'llWIiI

Non-functional Pvohh,m S(dving. I_nl i,,llnli/:_l itms leml Io i.volve .on-

fimcl, ional require....ls such ;,.'-; i..rform;,nc,. ,,r ,P.;,'rIri,.mllin,.ss. Addre,_sing

no. flmcli_mal r,'q,Ji,,.i,,,.,,l., im.',_dv,.'-; ;i ,lill,'r,*,,I ..lxh' ,d i)r,',hh.m s,t:,lvmg from

Ihat which ;,ddr,.ss,.s I'uml i,,,,;,I r,.,i.ir,'Hl_'nts I,,, Iuml i,,ual r,.qllir,..llmnls Ih,.re

is us.ally a cril,'ria f,nr (h'l,'r,,_iniu_ wh,.I h,'r ,,l .,',1 Ih,. s,d.I ion s.:Histit's lh,p cri-

t,eria. AIs;c:, onl)' OlH. ;lllel'll;_lr is; ch()s;,'il ns; ;i '.._dufbnll ,,Veil lh,",u_h lherc, may

h,-. sev,.r:d ..iahh. ,,.,'.: fin lh,. i!r,,hl,.lll ".,,l'.h,r. r::_l,l_ lh,. :lll,.lllnl,,..; fi,r n flirt,'

li_)llal i,r,,Id,._. I;,r., nn _'xrl,_:-.i..','-,,.' .,,,h) I,,_ H,,H l.i_li,,IHI rvq.ir,"l.r.ls.

lhe crilerm, fi)r ch,.)si._ ;,rH,'HI_, :_ll-rnnl,.-. is r,...s al_s,-,hll,. If I1.. F,,"rfi)ru_a,lce

re(luirem,..I is: for n r,.sp<ms,, lium ,:,t" ."_s,.,-,_.,t-., nn ;1¢111,tl l','gptHIs;t' fillip ,nr F},.I

secomls may I.' ;ic(eld ;d,l,. Th," cril,'rin I;',r ,t,,,i,line. l llnl a pr()j4r;tlll illOel_ f,he

re(luir,".mnl i"(_r u:.._'r fri,.n_llil.*:-'-: is: .'.,'. h,_.s i._._is. I:,,r _c,l_." n,m fimclionnl

requirements, sevrlal all,'rn:,t,'s _:_ h,' <l.,..,nsi_,mlln.,'rms;Iv A¢'hievi._¢ n

Imrl'c_riH;in,:'e r,'q.ir,'H_'Hl:- ill;iV I'_'(IHii'_' lh,' ,I,".,'h,l,_,,,'nl ,,f s,.v,'ral ;_lKot'illims

;'rod daln '-:lr.cl.rvs. %chi,.xi._: ,,._,.r fri,,.,lli.,...-, i.; ;,I-.,, ;, lll;lll,.r ¢_F ,I,'_,l't',P ill

I1." prol,h'l,, s(,Iviil.e. _r:,l,h I1.' ;dt,'r.:,l,'-: l,,_ .,,l_ l,_.,'l i,,.al I,r,d',lm_s may form

a,w incl,_siv,n-or ,l<,d,'

Articulating the. lleq.irenl(.nts. lh,' _,.m.r;,lizal i(m ,)f i.'t)hh'm_, lho

development (,f rat ionnh" an_l the reline.,,'ul ,,f m,.-f..,"l i_mal r,p,l,lirenlents in-

dicale a sl,yle of prnl>l,,.._ snl.:i,,_ ",,vhi,"h .e:..'-: f'r, ,,,, I,arl ic.h,r i,,'-:t:,nc,.s Io .Ken,"ral

I_,rohlc'ms aud s(>lulions;. ()l'trn in lhis; I,r_,,'vs'..: il i'.:. di.,.:c_,',.,.r,.d lhal th," original

i>roldc'm rc',quiretn,_'uls ',v,.r,. im'_,_,il',l,'le W,. ,,,Ir-:i_l,'r Ih,. i,lm_lilical, icm and ar-

l,iculalion of true i_rohh.m'.; Io I.' an imp,cq'l aHI asp,"cl <d"st',fl war(. dew'lopment,.

Unless a pro.iecl, inv(dves lh,' (I,"..,'lc, l..vul ,,1 s;_,ll wnr,...vlfich is well .nder_tood.

develol,ment, mc.l.hodt)lt_gi,.s: which ass;m,,,. I1,;,1 lh,. r,',l,_irrm,'.ls; can I',e accu-

rat.ely slal.ed IM'oreha.d are htmml I(:, I:fil [_l.'_!)].

Opl)orLunist.ic Sd_ed.li,_g. W,. h:,'._" IIt)l fi',H,;d lh,' dps;i_n process for l)-

Ilyl,,.r(';ise l,n h,. I,np d,:.'.'l_ :m,t wr su.-:p,.cl Ih;,I ._,,-.I ,I,'sil_,. is; n,,t. I),-i,,K lhe

treat, ire fi.rmenl. _1"design, i>_.(,i,h' w()rk ;,1 I,,;,.> h.v.ls. ,'xplorin_ crit, ical issties

ORIGINAL PAGE IS

OF POOR Q'tA_,ITY

2_

ill drpth uut.il a ._ohlrmn path hr¢ou.._ d,'ar In fib,' l*m_+e_,_ of de._ign, new

problems may J.' id_nlifi_'d whos.._ohltk.i +... tllay w;lur io d<,fi.r. Somelime._

the alternates are id,'nlifi_.l mul anaJ.yz_'d Iml th,' filial ._olutiou is defi'rred. If

n|isSillg rc'qllirelll('llI._ Rr(" dL_covered, tJ|ell lh,' _,:+hl|ioti ,')1" ;i |)a.rti<'llJar proJ)J¢.lll

may have to be (h'fl'rre(I until the requh,'nl<'lHs are fi_r:ually modiii('d. Wo haw

Found lhat work i,_ don+, ;11 many h, vels of II,, _h'_i_u +'on<'urt'<'nlly aml thai,

f,here (:all Jm nl;_zly unrrsolvml issue,_ pn'srnt '_it:iuli;uleoll._Jy. _'_'_" lmve fOtlnd

that tim deei,_iou tm._ed apl_roarh hells to {_r_auiz_, and ._f.rurl, ure lhi,_ proe_'._s.

A,_ probh'n_s are idenfifird, alirrn;diw.,_ r,'.i('('f<'<l and d+'('isions made, t lv'y are

recorded. It is no! nc'c+'ssary to iuunedial+.ly ass(,+'ial_, lhrsr (parlial) decisions

in lhe dt.risi(m d_'pendrl_¢y graph. In.rl,,ad, l ll.s_..h'_'isiou._ +'an I., plated inh_

a pro.j_.cl a/_ruda fi_r [al_'r r+'stduii++n. II is lh,, r,.N._NluJily ,+F il|;lll;ltgelll+'111, It>

alh+cal," rt.st,ur<'_..+ I,+ lh_, ,I,,+ isi,ms ,m flu, IH,+iP,-l ;_g.+'lula wlmh will h.ml l,t_ I h+'ir

eVelHHal s++lul.ion anti pr_+l..r l,[;,c,.:,,rlH iu lh,. +l,.<isbm -.lill¢llll+.

Av<,idh_g Bi.m. _;iN,+,, ,,v,._)_<duti,,. slu._hl I.. _+,nn,',l,'_l It+ lh," l_r++Id<.m i+

solvrs, +h+'r,. sho,_l<l I,,. a <'l,.ar l_afh Jl_+m _,._r+_, _,.h. Is, r,.<imr_+lu<,IHs, gt+luli+ins

which c;muol b<. I ra<'rd h._,'l_ It+ s,.:., l_I'+_l,l<.;_ m lh+ +r,'<lllH,'lllt'llls indic;H+" ,'il her

a missing requir,'ni+,til. :_ n,+u l,i,,l+l,.i_i ,,r ;,ll iI,il,l,.ri+,.til,,r ;.l,h'd I'_'alur,,. I,, lht.

|irsl <-as++ lh<. l'<'<lllil'l'lll<'lll_, +h,.,hl I,,' ,ha_,v,,l I,I lh,. "-,',,,lid ,'as,' lJw _<,,Jllli<Hl

lo l.h+" u++u-prohh.i_= sh,+ul,l lu,,.liminal_.,l In flu, la_.l cas_., lht. u,.,'r umy ('l_+_<++r<.

I,o keel> lhim mhh'd f,'alur,' Iml n++l <'h;_n_,' lh,' rl.quir,.nmnls. 'fhim J+<'alur+" is

Iht'u .i_lslili<',l as a ,,.,.r,,I I,ul n,,l, ,,'-._.,.r_li;_l i,;:11 ,,I + Ih,. i,,,,_.,-au_ lu +.,llh'r,'+lllPl|l

nainlrmtm' +, I1.._,. fl.alu_,,.. ,,._1,1 I,,. I+'U"''+'L'I _t il I>' II'U_'I lh;tl lh<'il _'_+_1_hav_"

I',r(',mlU un<'×_'_'F,I;_ld., high

S.llp_.-t, for Co::l,i:u:HI I),.v<,h.,l:,::,,_t. V',',. h;_,,, I;._l.I _,',"<,r,lin,K all+'r-

ual.iw.s If:, I.. v;d.ahh, h,,tl_ l,, <lt,cu_.,_l ,t, a,I ,.,I.- ;t_<l It+ l,r_>,.ul,, s:l;,+rliu_

poiuls fl+r latrr i_ul,r+,v,.d d,'si_us 'lhis lal,+r is,-.l..,iall) _t_-,'lul if<m,' is using
au iu<'r_'_.'ulal lu_ihl i,hil,,..,+l,h.,

6.2 (+rant_laril,y of lr]l(. 1)ecisio_ Hl.ru,rlt_re

()nt. of lhr i:,mbh,m_ iu m-iuv. Ih," I)l_,gl) ;_l,l,r,,;.h I_, _<dlv,'art. d<.v+.h-,im..nl

is its gt'r:t.ralily. Ahu_+st ,._,._y at'li,,n _+;_u I.. lh+,ughl +,I" a._ ,uakiv,g a ,h'+'isi+m

t,o solve s<+m_, i,r<,bh.m, Ma:Lv <-.,r Ihesr d,.¢i+:+.k_l_Sart. trivial or unilnF, orlaut

and documonling lht.u_ v..'_,ul,l rt'quh',- _._r,' ,.ll,+rl fhau any i_t+l+.nlial brllefit

could .i.stify. I':xaml,h's ,,r +.rh ,h'+'M,,u.. ;_r,' whal i_alu<,s It. u,'.:,+'[<_r h'llq.)rar+v

',,'arM,l_'. or how Io +idil a ,<._q+h.x ,'Xl,r,'_.'.i,,N a,r_,s+ _mlriph, liu_'s. S.ch trivial

decisiou._ ,Io uol n,','d If+ h+, r,',',.'<J,,,l ,.ilh,+r l,,.,aus,, lh,. ,l,','isitm _mkiug l+roees._

can be easily r,Pc,mlslrll<-Irtl _,r Ihrr+, is Jill h' inq._,'l in _h;u_Kin _ lh<'m. II,+.(:,'+rdi:_g

trivial d<',:'isions lu+l ouly I,h.,'s au .u.+',',.ssal., hm,l,,l_ ,,u lh,' d_'+.,igm-r I+,ul also

serves I,o overwl..h. Ih_. u_an_l;_inrr wilh trivial d,-'u_mntatim_, l),.v_.l,+:,l)in.p.,

useful guidrlines for th<. r,',<,r,l:iu_ t>l" th'_'isi<,_s i-: _,u,' ar+.;_ whi+'h m'_'ds further
rrs,,'ar<'h.

In <llh<,r _;isi,s :l llll,l>l,,rii will th,¢_,llll,,,<,,, illlll nul,l,r, ll>h.ilis I'l>l whi+'h Iher+,

OR{CIKI._L PACE IS

OF POOR QUALITY

29

are no viable all.ern]ates. For exanlple, if a sta_'k i,, {'ll<+sq,ul as l.he ._olution to some

dal.a st ruct.Hring i_rol_h'ln, t l,,u d_,signing thr sl;u-k dr<_nnl_Om's iulo designiug

i,lzeinilial,i+m, push and i_,_i_ _q.'rali<m.,+."l'lu,r,,i.+n,_,'h<_i_'ral.ml havingl, h+_s_'

Ol_eral,ion.__. A d_.co,uposili,m for whi_'h lh,,r,'at,,m, viahh" all._'rnate._is<'all<'d

a design decomposition a,ul a de¢omposili+m [_r whiMi I.here are viable alter-

rtages requiring a deci._ion amt juslificalriOn is call,',l a de,'isi.n deromposition.

Our first atl.ernl_l.s to Imihl a decisiou del.'u_l+'ucy _,raph for D-llyperCa.'_¢' in-

chMed l)olh design and d_,ri_icm deCOml_ositi+,ns. _._,'_'flmml reich graphs 1,o be

unwieldy and relwliliw' _r infl_rtualion conlaim'd in other dc.cllnlelllral.ion+ _,Vr

now require l.hal, only decision decomposilions I_, in¢ludrd in lhe graph. A de-

sign dO¢lllwlenl is slill l,r+Mm+rd iu con.iun<Ib_u x,.[lll Ih.' derisi<_n graph aud we

inlmduc_" a "drsiKu" 1ink I._,lwr+,l_ all _,h,tll<,ul in Ill+, ,h',4'<u +bwuUu'lH and a nod,'

iu t,lw <l,'cisi+m _raph

6.3 l_valual.ioll of I)-Ilyl_er('ase

[1 is o[" IIituogl hllp,_rl;llur lilat tim cl>sl I_ Iht' _ls_'l <_l' any new In,,'t.Jlod or

fool l+e Slll[ici+'nlJy J+)w l<+ .jlIM[I_V Ill<' H(iV;tlll+'ig<',_ (l;lillli.ll. _'x'<. Jlavl. cJ;lilll++.t+l

five maj++r advaulag<.s: ,.as,, ++fuil,l,,i'si:_udiug,, a h;_iMl<" al assessiug I.he impact.

of a proposed ('Jl;111g<'. I r;Ii'_';lJ)ilil)" ()I + S<+HII+_'(' i',)tii' l Jiliili_Jl i]o(+lllll+'ll(;_llioll t.o

r<.<luir,-.nl+.nls, ,,a.+.-:<` in r<,iisiu_ ,,xi'-:lin,K ,,.h, t+,r l,_,,,lili,"ali+:,n :+u,I +..+,H+l',(,r! f++.r

cr<'ttliv_" llrs+/_.n w++tk 'J hl.+., , ;ir<. lll;i.i<ir l+,.ll<.[ils Jilll _,lllx +J;1 _;+v_l<'lll +'x+s(s (i)h<'ll+

galh,'r aud lll;_hliain Ill<' n,._+'s:..;ir+,. inf_+tItu_l i, ul a:.. _,.+.11:_ ;_ll+_w f++r ,"+>tlsist.,_,nr+v
ch+,,++k:<.

The sl alistics ,,sl i11i;1+ +'_ I ill S+'t'I i('il .+) I,'lb'ct a sl +tl it' +'_. ;iJll;ll il)ll c,l" I h," di'_'isi<+n

strllrtllrl'. [tl c,r_b'r I<', HIl+l+'l'slatl<[lhr tl'¢ll;llui,"s +:,J' Ill,' d<'si,_ll I:,roress. x'+'_' +ir+"

ilisi, rltiili'llJilig l) II.vl>,'r(';r-+' I<, +'<,ll+'<'l "..i:llisli<". <qi ,'ll<_r+ nil+J I..nrlit UVhil+"

Ill<' +'Ii+xlll'i" ++[" :l J;Isk i _, ;I >,l:itlC C<,ll,','Iit, _,x+' l,,.li,'_+" IIl,'l+' lll;l's ;,I_,, l.. +, _IVll;llll+<"

'i,ii<','l+l ;+kin I, Ill,' w_,ikll+_. _,'I _,,,,,I,'I <,I _iilllal lli,'ili,,r+ l h," w_.'khl_ met

Ol'a closllr< +"is Ihal sul,s,.+ ,4 Ih<' <lc,ctllll,'ul;lli,,ll whh'h Ill,' iis+.r n,,e<lm to access

.giiilllll_lll<'<++llS:l+v ill <_r_l,'t 1,, lu'rl+cirlll S<llll+, ll;lit +,J';i l:lsk 'lhr al+iliiv to SilllllJl.a-

il.l,t>lisJ+v vi<,w illJ'<+rlll;ll it)li ill sl'v_'i';ll v+,ill_J,+'.'¢sis _11<' ',*.;iX ;i si',l'lwar,t' <'ligilli'<'rillg

i,livirotlllil'tll lilig.hl siij+,jiiH'l ;i w<HkillL(s,,t nl, ul,'l k:-. I,t" li<+W, "+t.+<" dl:,n'l+ kliow if

Ihl. wol+khl_ s+,l Illc, drJ i:< nlil,r,+ll,ri;ll+ ', i_r, il il is. ht-,w lii l_ ;I x,,orkilig s<'l shouJ(J h,e.

We hope it, i_+lili SC, lll<' illSiU, lil inl+_ lhr+.+" iss_i<':< ihr_mKh Iurl Ju'r <'xl',l'rilli_+'lllal+iOll

wil, h l)-Ilylwr(+as,..

l_'|+|li'l'+" ;i,l'l" _-Jlili,'¢'_. ;l_J+<,lll Ih,' llll,l,'ll_+ hiK +l;tl;t-II III (III<. i hi+_f'll I,, illiJ)Jrllll'tll ;!,-laik Th+.m,.

cJi<,ii+es aff+'<'l all Ill+" ,,l+<'l+;tii,,ll- ,,ll -ira k.. Al_:liil +x ,' .,',' lJ,;tl +l+', i-h,,i_ ,I+, li,,+ n+'+'+'._,_,_.riJ_,' li1,'tl)

illl+) flllli'l i_+n,_ <_I Npi.r;ll i_,u-

ORIGINAL PAGE IS

3O

7 Conclusions

The Decision II_e(I Softwaro I)evch)pm<'nt I';_r:ldi_nl is I.'ing dewqopod to

support the process of (Iovoloping and ili;liiil;iiiiili[software' sysi,!lllS, In l,hi_

para<liglil, the design lirocess is consi<ior<'<l ;i iw+)l>h'lil solving activity ill whicii

prol)lelils are idenlifie(I, <-illorii;Hos I)rC>l)r>sed .ill,l ail;llyzed ali<l a decision of a

liarLiclli,_lr sohili()ll is ill;lib'. I:l)' rt'cording I llis l>llW<,ss, I),ll h inil.ial d_'vo]Ot)lii('llt

,alid sullsequenl lilainlolialiec' is faeililaled. ()lip OXl)eri0ilees ill al>lllyilig l, his

paradigm 1o the dovelopiiiont of a proloiyl>e <.,ffl W;ll'O ongiilooring OlivirOlliiiOlll,

indieal.e t,hai it sutH)orls a dosign process whi_h Mlows progress ill Ill,lily differ-

Ollt I_ll;I._es of" I,]ie sol)ware 1i5' cycle Silliull;inl'!,li'_l) lii llarl,ieiilar, lhis <"lpltroacil

aids ill Liil, (IovO]Ol)llil,lil ;ilill ;irlictl];lli_lii (if' lh. s,,sl,,llis roqilironlelils. Tllis

i'_ara(lijz, lli illlik_'9, Sllch (<>lil'ilrrl.lll ;v'livily i.>'-'_il,l,' I,_ ili,lkilig lho i)r(i<'_._s lllOr("

visil)lo ;llil] lht, rel'ore liior(, lli;liiiit4('ililit'. Nr>il-I'iilicli(,ll;tl lirr)liil_lii solvhlt_ phys

,'ill illll_Ol't;llll rolo ill Ihe ,l_':_i_ll I_i(w_'s_.

l_reliillillary r+,sillls Oil lhe ilSl, <,[Ihe I)1171) I);ii;l(li_lll I()Siilll),>rl tllo iiUiill

I,('ll;lllet" liroct'ss ilidic;lle Ihlll Ihe iI,.cisi_>li si iilCllll-_, i_r_,vidos ;ill ;illl'l'llllll" aild

liiol'e al)stracl viow of Ilia" soflwar+, l[OrililV,ill ll,qm, iii ;i,hlilion ilia. lirecision of

a deeisioii view for filldillg ilie lic,¢illllOlll;lli<HI I'_'l<'V;llll Io a imrl, icular ill<"tillt,e'-

liallCe l;-,i,,-il,; is _roillor Ill;ill l ll;ll ()[" a fllliel ioii;ll ,,i,,v,. This I>rocision should aid

iii I,ho lll;lilll(.ll;llll:'_' rlf ;_iicill;iry <lol'llllll,lll;lli+,ll ,_iilco Ilia, _h.cisi_il viow ilichi(lo._

all relo',';_lil [li<)Clllll_'lll _;, Iq'_>','i(lili, ;i lilik;l_+' I'll>ill i'l>itllill'lil('lll_ l(:l _.<)lll'CO el)do,

lli i_r<ll'r it) ['ilrlh,'r ,I-_-I,>1, ;i lli,'lh_-I_,l,,tt_, I.,..,.,1 ,ill Ih_' I)llf':,l) I><qr;-I(lil_ill,

;ill I,_:ihl;lli,,ii t,I ii,- .,.,, ill il_,, ,I,'_ittli :ill,I lii;llill< ii:iil,, i,ll,,',"-+_, i,q I,_'iil,e, iiillll'r

I;Ikt'li. ('i'il_'li;i 1711"+'_,;lili;ilili_ Ihl' _l_,li;lliii, s _,1 tii,' ,h'_,,'[<llllli_'ill llrocess Ii;ivt.

I)eoil I_rOl>OSed ;llltl wt, ;ll't' illsli'lllil+'lllilll_ l) II._l-'ll ';i-,+', ihe Iwr>loiylw I)ItSI)

oiiviroliliioill, i_) c+_ll_'cl _,,,:_lil;_li+_li d;ll,'_,

8 Ack now|(_'(| g(_'lll(;n t s

This r<'s,':_rch was S_ll)l.>ri,',l I,y NA\'M)l_() ;llill N li_.\ I,,lli_l_') llese;llch ('ell-

lot thl_ll_,h cl')illr;icl N.\541 IS5:.41 II ;lli,I ";,_ \],;llii_l,')II_,s+';li(ll (ll+;llil NA(I-

t- 102H.

References

[hDm] Illis+'s Agill'l'_, ;tii,I Sllllr;il;i I);l_,,t41il,l;i. :_t tll;lll_.il)ilil)'-ilri'¢en ."tl)llrr_;leh

1.o ¢olnlilllor ;llCiiit_'cl iii_, d+',_ip, ii. ('. If ',II. ;l(i(I I):922 .q32, Novi'lliher

19,'47.

[AMYSS] llolir'rL Aks('yll, I)oliald Mc('r;ick,'n, ;illiI Alis," Yoder Kins: a dis-

lriliul,l'd h)'l>l'Hiil'di;i _,y_l_'ili f<lr lii;ili;l_illl2, kilowlod_o in orgalliza-

I.iolls. (',,1('M,:11(7):_47() _435, ,liil.v I!lSS

ORIGIN."-,LPAGE IS

OF POOR QUALITY

31

[llal_5]

[Balg_R]

[11;_..911)

[111.76]

[llo_S6]

[llrog7]

[('llSs]

[('l,,S,_ 1

[('ongT]

[('()11_ 1

[("IA S!I]

[I)asa!)]

[dKg6]

[1)oy79]

R. Ilalzer. A 15 year persp,'clive Oll :UllOlllatic progranulling. IEEE

1'rafts. o;t Soft. f_19., SE-I1(11):1:257 12d7, Nov. 1995.

liobert llalzer. Processing l)rograumfiug: passing inlo a new phase.

Proc. of lbc ._lb htl. ,fl'nflu,ar," /'zr,r,.. II',_tX.b.p, .11 15, May IflgR,

Vict,,r Ilasili \'i,'wim_ mainl,'U:ll.,. :,_ r,'u'.,' ,,ri.nl,.,I s,,l'lware (1_"

velolmtmll,. IL'l:'l'; ._'.fl.,nrr. 7(I): I!1 "25, .lalulary 199().

James lligelow llyperlexl and tax,., ll';l"l'." ,q'r_fl.,,71_. 23 27, March

1.qgg.

[,.A. Ih'h.ly a,.I M,M. l,,'hlnall..'_ II1¢,,I,'1 ,_1"larg,' I_rogralu drvrh)p-

mrnl. IIIM ,_'V'.lrnr'_ .h, trrlt,fl. (3):225 252. 1976.

Barry llo,'hul A spiral II..M of s,,ll war," _l,._rlolm..nl and enhance-

merit. A('/tl ,",I(..';OI"T ,",',,J?Ir,rl, I".qln,, iinq :\'olr';, l l('i):l'l 2'1,

Aug. 19lR6.

Fred Iiro,)ks, No silvrr hull,,l: ,.ss,,nr,, au(I ;.ri(h,lltS of software

engilw(,rillg. ('r, mpu/rr, 2(1: I() '211, .'_ i,ril 19,_T

.h.lr('oukliu al,I Mi,'ha,'l II,'_('lllnn q/Ill.'. I IlqprrhrI "l'.rfl.f.r kl_'-

I_I,,_.I,,_V I',,h,,i /b.,._m. I,',hui,:_l I,','l.,it. "q('('. Mar,h I.qS,'4,

N_'(I ('h;_l,iu %dl_t:u,, lu:_iul,,l_;llU,' lib', _,1,' I'r,,r_,,h.qs ,,JIb,

.],'ll'(',mklil_ '1 ,"._rrv r_flhlp,_t_._l. l,.'tll_h':_l Ih'porl Ih'v 2. ,M('(',
I)er. 19S7

Jelt'(',mklin. lh,,_,l. Italm.,d, ,_.,I .lh_,.I,_.,_bfldV "l',','hnic:d lle-

Im',)rF.,r;d,',l ('1:\ Ib_ A Il'l_ h' I.vH,,.m, ul I_ ()l_craho_._

('tn;r'r'l,t T,,chm,'.l liep(_rl N.\%5 :lfl(;Xll "Xk%.'_ (;r),hlar(I Sl)aCr

Flight ('m_l,'r, ._ll_llt-I I!},'_!1

Sul)rala I)asgul)la l'h,' slru('tu_,. ,,1 ,I,'._i_.n i,ro,','ss,',_. In M.('.

Yovils, editor, ..tr/_',_.,r_ t. r'0ml, ut, r,,.I,a_,,'_. I 6S. Acadrmic I)rr'ss,

New York. 19,'49.

.]ohal_ de Kh','r. I'r(d,h'lu s_,hil_ wi_h lh,. ;_lms ..l_h./irtal h_hqh-

.qtttrt, 2g. 1986

.Ion l)oyh'. 'lr_ilh i_udifl,'u;_m',' sv_l,,_us .Irl!lir'_.l h_lclhqc_ce,

12(3):231 "27:2. 1979

ORIGIN:_L PAGE IS
OF POOR QUALITY

32

[l"ic_5]

[II N90]

[II':I+:8'8]

[l,S'8_i]

[Mc, s,_+;]

[Mosgg]

[Sin,'81]

[,"; I,I I Xg]

[Sneg!)]

[WI_I'89]

Y,;lel>lwn I". I:icka.'_ Aul,'uu;Iting lh,' Ir;lusf_rln;fli,"m;d <h'v+'l,_-,l>lU_'iH

of soft.ware. IEEL' 7'Tn1_.'_.on ,%,ftu',irc l'.'nqn_rrrmg, SI'_- I I(I I):I 268

1277, Nov. I.q'8,5.

Mehdi llaramli and .lilJl Ning. l(Ii,w,'h',Ig+'-l',a.+r',:l program analysis.

II+.'I';E Sa[lu'arr,7(I):T'l '81, J;lllll;ll'V 199(I

I I':F]I'L It+'l_res+'nling and en;wlin_, lh,, s+dt',v,jr<, pr+w+'ss. Procccd+ng,,_

of the .tilt /nhrnahon,'fl.q'ofln'arr I'l+.+.++ II'ol/_.shnp, May IOg,q.

,gl.anloy [,_.lov:.;,ky and I';lli,)l .S,'+[o',va,,. I),'hw:-diz,"<t pI;,ms and l',r,_',gram

COml_reh,r'nsion. ll"l'.'l'_ ,q'oflw+tr,", :I(;I):ll 19. May 19'81_

.Jack _l,_,ml,>',.,, _,Vhv at," d,'._i_u ,h'rivali,,us hz_r<l Io r,'Iday'? In

.]ainu' ('arl+,'m,.ll 'l',,m Mil,h,,ll ;lu,l l_sz+ir,l Michalski. 'r'ditors. Ma-

.lack M_+sl+:.v l),'sig, n hy d_,riv;_li,,ual ;_u:_h,ey.': issu,'s in l.h,' au-

l,'+lual,"_l r,,l,l;Lv ,,f <h'siKu l,l;ms .l_hli++,d l:_l, lhqcn,'+..I+):119 1.8,1.
19;,+,9.

l)avi_l l.<,rg<' l'arua_ %+_['lwar,. ;V_l_,.cls ++I _,I l';_l,'gic +l+'f_'llSI' S+VSI+'IMS.

.'I IHCI"Pr+IH ,¢_'CI,'H/I*.[. 7_+:,1_I_ ,I If), _h'l_l -()el I!)_5

Sl,,..,','r It_,e.;;l,,.r. Sl,'l,h,'u ()_nl,u_u. ;,ml .Ir l{ich;u',l l,,'IH;m+' lh'c-

,/2,11i;.'.iI, <h'M_tl <l,',i-.i,,n_ in l,r,,_,:_lu:-. 111'I ",',,/lw,.',, 7(I):,Id 5.1,
.1 ;I IIII;I r'.,] !I!I{)

ll,'rl,%iu_<m.._,++,¢_ +,,flh+ .l_hli+ml. 'qlll'i,'_.s.('mul,rid_,e. Mass..

19'81.

S. N. 'I'.._h,'ll. I, l,iu. ;utd .I ll"q_ \ hXl..r u,rald_i,"'_ I<_<_.Ifor mul-

lidi_,,ril_lin;try ;q,l,lh';_ti,m'_ /','+w ,,1 Ih+ Inl 5,qml_ I:'rpcrl .S'qmtrnt+

7"h,r,,rq a,d "17_, tt Ipph+,_h,n',. l),.c 19,_N

llarry Sn+._'d lh+' mvlh ol" "'top <h,xxH s,d'l_xnr<' d_,v<.l+qunenl, aim

its C¢+llS+'<lllellC_'s [c,r s+_l'twar,. t}l;lilll+'tlnll+','. 1'1_,_ ('o.f. on .%'o/lu,nrc

.llat_lc_+tncc. 22:11. ()el 19,_H

I¢ich;u'd .";I;_ll_u;_n (;m_ ,,_a,'.. u_:_uu;_l ()r_,d,,.r. I':),'qU.

('hrisfiztn Wihl aml I,_ll NI_I,, l,,ward,_ ;_ s,dlwar-_uainl.elmnc,'

SUl+porl euvit'_mlli,'lil, l'ro+'+_,h.q_1,1lh_ 5'o/lu'at+ .ll,_;.Icna_tcr ('on-

fcrcncc, '8[I ,qS. ()cl<,l,,,r I!),'q;q

(:hristiaI_ Wihl aml l(url .Maly l'_,,cisi,m-h;_-d sc,ftwaro develop-

.'7of hl,arc ,_la.+/, ,,,+,'. 2!17 :{If(i, (),'l_'_J',+'r]!)N'_}

.rh,'g!v _ -- v--,,, ;+

3:'1

(:a._c' J".nrlion I),'cisio. Viow Ilat.io

(in I,OC) (in I,()(:)

Av('rag_' .".7 220 3.!)

l,argrst 3(i[1 IH99 ,1.7

I"i_.lr,' 7: Size, (d ,Al,'-II;I,'ti,_lls

Tyl-" # I:llllrli,"_.l_sl # I),,,'isli,,l_s.

Modili,'d

I)('l,'l,'d

A,l,l,'d

I()O

7_

7

I_n! i,')

,q 6.2

I_ .I.2

I 1.8,

I"i_,l.rr N" I'(re,.'.,r _1" ('h_.r,' _;,'t

('la.g'_ I"..rl ic..;_l I),'," i'-i,,. Vh",v

I.()(' I.()('

A w,r ag/, _;_1 2'2(I

I,ar_,('_l q1121 169!)

I+;ll i(', _ I"

3.1 12

3.8 I()."_

View I'oint, # Al..Ir:wli,,lln 51iz,. ('l,-.s.I. I'l,.h,v:-.Irc. Ov,'r.qight,

(Class) (1.()(') (I'd'fro,t) (l'orcent)

Fl..llc(ional(Modili,,d)

I)_,c isi,,n (M,_,lifi,,d)

I",HIr I.i(',nvd(I)rh'lrd)l

Fu nc I ional(I)el,'.l ed)2

I)ecisio.(I),'l(,tr'd)

I(ll]

7,_

I,r

5CI7,()

2119

72(1(;

2.936

2.96

I 3S

IO0

10.7.t

I00

I"ig,lr_' II): I'r,',ris.i,',. for _l_lili,',l ;lll,I I),'l.'t.'d I,()('_

0

0

26.8

0

0

OR!OtN._L PAGE IS

